This study investigated the influence of infrastructure spending, government debt, and inflation on GDP in South Africa from 1995 to 2023. Motivated by the need for sustainable growth amid fiscal and inflationary pressures, this research addresses gaps in understanding how these factors shape economic performance. The primary objective was to assess these variables’ individual and combined effects on GDP and offer policy recommendations. Using an ARDL model, the study explored long- and short-term relationships among the variables. Results indicate that infrastructure spending positively impacts GDP, promoting long-term growth, while government debt hinders GDP in both short and long runs. Moderate inflation supports growth, but excessive inflation poses risks. These findings imply the need for targeted infrastructure investments, strict debt management practices, and inflation control measures to sustain economic stability and growth. Policy recommendations include expanding public investment in productive infrastructure, implementing fiscal rules to prevent unsustainable debt levels, and maintaining inflation within a controlled range. Ultimately, these policies could help South Africa build a resilient, balanced economy that addresses both immediate growth needs and long-term stability.
The prospects of digital infrastructure in promoting rural economic growth and development are by and large immense. The paper found that rural development is considerably important for economic development and for achievement of sustainable livelihoods that increases people’s ability to achieve good health and wellbeing that enable the achievement of sustainable development. The paper found that digital imbalance and digital illiteracy in the rural areas hinder implementation of digital infrastructure to lead to rural economic growth. Digital infrastructure is the source of economic opportunities that enables local people in the rural areas to be more creative in achieving development success. It enables them to have a unique sense of place and fashioning of vibrant economic and financial opportunities that ensure the achievement of sustainable rural economic development. However, the paper found that the application of digital infrastructure to South Africa’s rural areas in the bid to promote rural economic growth has been hindered by factors like the digital divide, financial constraints, digital illiteracy and the failure to own a smart phone. These factors hinder digital infrastructure from leading to sustainable rural economic development and growth. The paper used secondary data gathered from existing literature. The use of qualitative research methodology and document and content analysis techniques became vital in the process of collecting and analyzing collected data.
The failure to achieve sustainable development in South Africa is due to the inability to deliver quality and adequate health services that would lead to the achievement of sustainable human security. As we live in an era of digital technology, Machine Learning (ML) has not yet permeated the healthcare sector in South Africa. Its effects on promoting quality health services for sustainable human security have not attracted much academic attention in South Africa and across the African continent. Hospitals still face numerous challenges that have hindered achieving adequate health services. For this reason, the healthcare sector in South Africa continues to suffer from numerous challenges, including inadequate finances, poor governance, long waiting times, shortages of medical staff, and poor medical record keeping. These challenges have affected health services provision and thus pose threats to the achievement of sustainable security. The paper found that ML technology enables adequate health services that alleviate disease burden and thus lead to sustainable human security. It speeds up medical treatment, enabling medical workers to deliver health services accurately and reducing the financial cost of medical treatments. ML assists in the prevention of pandemic outbreaks and as well as monitoring their potential epidemic outbreaks. It protects and keeps medical records and makes them readily available when patients visit any hospital. The paper used a qualitative research design that used an exploratory approach to collect and analyse data.
Distributed Energy Resources (DERs), such as solar photovoltaic (PV) systems, wind turbines, and energy storage systems, offer many benefits, including increased energy efficiency, sustainability, and grid reliability. However, their integration into the smart grid also introduces new vulnerabilities to cyber threats. The smart grid is becoming more digitalized, with advanced technologies like Internet of Things (IoT) devices, communication networks, and automation systems that enable the integration of DER systems. While this enhances grid efficiency and control, it creates more entry points for attackers and thus expands the attack surface for potential cyber threats. Protecting DERs from cyberattacks is crucial to maintaining the overall reliability, security, and privacy of the smart grid. The adopted cybersecurity strategies should not only address current threats but also anticipate future dangers. This requires ongoing risk assessments, staying updated on emerging threats, and being prepared to adapt cybersecurity measures accordingly. This paper highlights some critical points regarding the importance of cybersecurity for Distributed Energy Resources (DERs) and the evolving landscape of the smart grid. This research study shows that there is need for a proactive and adaptable cybersecurity approach that encompasses prevention, detection, response, and recovery to safeguard these critical energy systems against cyber threats, both today and in the future. This work serves as a valuable tool in enhancing the cybersecurity posture of utilities and grid-connected DER owners and operators. It allows them to make informed decisions, protect critical infrastructure, and ensure the reliability and security of grid-connected DER systems in an evolving energy landscape.
Copyright © by EnPress Publisher. All rights reserved.