An α, α′-dipyridyl adduct of a complex compound hexaaquatribenzene-1,2,4,5-tetracarbonatotetra iron (III) with porous structure was synthesized for the first time. According to the results of elemental, X-ray, IR-spectroscopic and differential-thermal analyses the individuality, chemical formula, thermal destruction, and form of coordination of acidic anion and dipyridyl were established. During interaction of a complex compound with dipyridyl, it completely loses all crystallization molecule of water resulting in a compound with a chemical formula of Fe4(C6H2(COO)4)3(dpy)2(dipyridyl). Using the identification of diffraction pattern the parameters of lattice cell of the complex compound were determined.
Prepolymers containing isocyanates must be prevented from curing when exposed to moisture, which can be achieved by blocking the isocyanate groups with a suitable agent. The study carefully examines several blocking agents, including methyl ethyl ketoxime (MEKO), caprolactam, and phenol, and concludes that methyl ethyl ketoxime is the best choice. Spectroscopic and thermal analyses, as well as oven curing studies, are conducted with various blocking agents and isocyanate prepolymer to castor oil ratios, revealing MEKO to be the most effective blocking agent which gets unblocked at higher temperatures.
This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
To investigate the possible role of arbuscular mycrrhizal fungi (AMF) in alleviating the negative effects of salinity on Stevia rebaudiana (Bert.), the regenerated plantlets in tissue culture was transferred to pots in greenhouse and inoculated with Glomus intraradices. Salinity caused a significant decrease in chlorophyll content, photosynthesis efficiency and enhanced the electrolyte leakage. The use of AMF in salt –affected plants resulted in improved all above mentioned characteristics. Hydrogen peroxide and malondialdehyde (MDA) contents increased in salt stressed plants while a reduction was observed due to AMF inoculation. CAT activity showed a significant increase up to 2 g/l and then followed by decline at 5 g/l NaCl in both AMF and non-AMF treated stevia, however, AMF inoculated plants maintained lower CAT activity at all salinity levels (2 and 5 g/l). Enhanced POX activities in salt- treated stevia plants were decreased by inoculation of plants with AMF. The addition of NaCl to stevia plants also resulted in an enhanced activity of SOD whilst, AMF plants maintained higher SOD activity at all salinity levels than those of non-AMF inoculated plants. AMF inoculation was capable of alleviating the damage caused by salinity on stevia plants by reducing oxidative stress and improving photosynthesis efficiency.
In the present work, a series of butyl methacrylate/1-hexene copolymers were synthesized, and their efficiency as viscosity index improvers, pour point depressants, and shear stabilizers of lube oil was investigated. The effect of 1-hexene molar ratio, type, and concentration of Lewis acids on the incorporation of 1-hexene into the copolymer backbone was investigated. The successful synthesis of the copolymers was confirmed through FTIR and 1H NMR spectroscopy. Results obtained from quantitative 1H NMR and GPC revealed that an increase in the molar ratio of 1-hexene to butyl methacrylate, along with concentration of Lewis acids led to an increase in 1-hexene incorporation and a reduction in Mn and Ð. Similar trends were observed when the Lewis acid changed from AlCl3 to organometallic acids. The maximum 1-hexene incorporation (26.4%) was achieved for sample BHY3, with a [1-hexene/BMA] ratio of 4 mol% and a [Yb(OTf)3/BMA] ratio of 2.5 mol%. Evaluation of the synthesized copolymers as lube oil additives demonstrated that the viscosity index was more significantly influenced by samples with higher molecular weight. Sample BHA13 represents maximum VI of 137. The copolymer containing Yb(OTf)3 as a catalyst exhibited superior efficiency as a pour point depressant. Furthermore, sample BHY3 showed the lowest shear stability index (6.4).
Graphene has been ranked among one of the most remarkable nanostructures in the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highlight the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like the in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced, sophisticated methods such as three- or four-dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. The focus of all synthesis strategies has remained on the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is an obvious need for the development of advanced methods having better control over process parameters. Here, the main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only a need for current and future research to resolve the field challenges related to material fabrication, but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.
Copyright © by EnPress Publisher. All rights reserved.