This research article explores the intricate relationship between cultural impacts and leadership styles in social science management. It emphasizes the importance of cultural-informed decision-making, highlighting its role in fostering inclusive managerial choices. The study also delves into how diverse leadership styles enhance team dynamics and collaboration, contributing to an innovative work environment. While recognizing the potential benefits, challenges like miscommunications are acknowledged, with recommendations for leadership development programs. The research underscores the significance of leadership flexibility in managing diverse teams. In conclusion, the article emphasizes the positive impact of cultural awareness on decision-making, collaboration, and innovation in social science management.
This scientific study aims to thoroughly assess the current status and evaluate key indicators influencing healthcare and the workforce in selected European Union (EU) member states. Building upon this ambitious research agenda, we focused on a comprehensive descriptive analysis of selected indicators within the healthcare sector, including healthcare financing schemes, overall employment in healthcare and social care, the number of graduates in healthcare (including physicians and general practitioners), as well as migration patterns within the healthcare sector. The data forming the basis of this analysis were systematically gathered from Organization for Economic Co-operation and Development (OECD) and Eurostat databases. Subsequently, we conducted a robust correlation analysis to explore the intricate relationships among these indicators. Our research endeavour aimed to identify and quantify the impact of these indicators on each other, with a focus on their implications for overall healthcare and the workforce in the respective countries. Based on the findings obtained, we derived several significant conclusions and recommendations. For instance, we identified that increasing employment in the healthcare sector may be associated with the overall quality of healthcare provision in a given country. These findings have important implications for policymaking and decision-making at the EU level. Therefore, we recommend that policymakers in these countries consider implementing measures to further develop the healthcare sector while also helping to retain and attract qualified professionals in the healthcare industry. Such recommendations could include improving healthcare infrastructure, incentivizing professional education and further training in the healthcare sector, and implementing policies to support healthcare provision more broadly.
Biomimicry is increasingly being used to drive sustainable constructional development in recent years. By emulating the designs and processes of nature, biomimicry offers a wealth of opportunities to create innovative and environmentally friendly solutions. Biomimicry in industrial development: versatile applications, advantages in construction. The text emphasizes the contribution of bio-mimetic technologies to sustainability and resilience in structural design, material selection, energy efficiency, and sensor technology. Aside from addressing technical constraints and ethical concerns, we address challenges and limitations associated with adopting biomimicry. A quantitative research approach is implemented, and respondents from the construction industry rank biomimicry principles as the optimal approach to enhance sustainability in the industry. Demographic and descriptive analyses are underway. By working together, sharing knowledge, and innovating responsibly, we suggest approaches to tackle these obstacles and fully leverage the transformative power of biomimicry in promoting sustainable construction industry practices. In an evolving global environment, biomimicry reduces environmental impact and enhances efficiency, resilience, and competitiveness in construction industries.
This study delves into the role of pig farming in advancing Sustainable Development Goal (SDG) 8—Decent work and economic growth in Buffalo City, Eastern Cape. The absence of meaningful employment opportunities and genuine economic progress has remained a significant economic obstacle in South Africa for an extended period. Through a mixed-method approach, the study examines the transformative impact of pig farming as an economic avenue in achieving SDG 8. Through interviews and questionnaires with employed individuals engaged in pig farming in Buffalo City, the study further examines pig farming’s vital role as a source of decent work and economic growth. The study reveals inadequate government support and empowerment for pig farming in Buffalo City despite pig farming’s resilience and potential in mitigating socio-economic vulnerabilities and supporting community’s livelihoods. To enhance pig farming initiatives, this study recommends government’s prioritization of an enabling environment and empowerment measures for the thriving of pig farming in Buffalo City. By facilitating supportive policies and infrastructures, the government can empower locals in Buffalo City to leverage pig farming’s potential in achieving SDG 8.
The relationship between aid and corruption remains ambiguous. On the one hand, aid may benefit a country if the aid management system runs efficiently and transparently. On the other hand, aid tends to create new problems, namely corruption, especially in developing countries. This research examines the aid-corruption paradox in Indonesian provinces from a spatial perspective. The data was obtained from the Indonesian Ministry of Finance, the National Development Planning Agency of Indonesia, the Corruption Eradication Commission of Indonesia, and the Electronic Procurement Service, referring to 34 Indonesian provinces between 2011 and 2019. The research applies the spatial panel method and uses Haversine distance to construct the weighted matrix. The spatial error model (SEM) is the best for Model 1 (Grants) and Model 2 (Loans) and the best corruption model in Model 3 (Gratification). The spatial autoregressive model (SAR) is the best approach for Model 4 (Public Complaints) and Model 5 (Corruption). The findings show that there is no spatial dependence between provinces in Indonesia in terms of grants or loans. However, corruption in Indonesia is widespread.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.