The study examines the impact of various theories on the reflection and transmission phenomena caused by obliquely incident longitudinal and transverse waves at the interface between a continuously elastic solid half-space and a thermoelastic half-space, using multiple thermoelastic models. Numerical calculations reveal that the thermoelastic medium supports one transmitted transverse wave and two transmitted longitudinal waves. The modulus of amplitude proportions is analyzed as a function of the angle of incidence, showing distinct variations across the studied models. Energy ratios, derived from wave amplitudes under consistent surface boundary conditions for copper, are computed and compared across angles of incidence. The results demonstrate that the total energy ratio consistently sums to one, validating energy conservation principles. Graphical comparisons of amplitude proportions and energy ratios for SV and P waves across different models illustrate significant differences in wave behavior, emphasizing the influence of thermoelastic properties on wave transmission and reflection.
Optimizing Storage Location Assignment (SLA) is essential for improving warehouse operations, reducing operational costs, travel distances and picking times. The effectiveness of the optimization process should be evaluated. This study introduces a novel, generalized objective function tailored to optimize SLA through integration with a Genetic Algorithm. The method incorporates key parameters such as item order frequency, storage grouping, and proximity of items frequently ordered together. Using simulation tools, this research models a picker-to-part system in a warehouse environment characterized by complex storage constraints, varying item demands and family-grouping criteria. The study explores four scenarios with distinct parameter weightings to analyze their impact on SLA. Contrary to other research that focuses on frequency-based assignment, this article presents a novel framework for designing SLA using key parameters. The study proves that it is advantageous to deviate from a frequency-based assignment, as considering other key parameters to determine the layout can lead to more favorable operations. The findings reveal that adjusting the parameter weightings enables effective SLA customization based on warehouse operational characteristics. Scenario-based analyses demonstrated significant reductions in travel distances during order picking tasks, particularly in scenarios prioritizing ordered-together proximity and group storage. Visual layouts and picking route evaluations highlighted the benefits of balancing frequency-based arrangements with grouping strategies. The study validates the utility of a tailored generalized objective function for SLA optimization. Scenario-based evaluations underscore the importance of fine-tuning SLA strategies to align with specific operational demands, paving the way for more efficient order picking and overall warehouse management.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
The process management variable and the service quality variable date most prominently from the beginning of the last century, and therefore, in organizations from different parts of the world, whose search was to contribute effectively to administrative tasks, facing the challenges of constant changes and evaluations. In Peru, both variables were implemented since 2018, by technical standards, in order to contribute and improve public institutional work. Thus, the objective was to know the most outstanding characteristics of process management and service quality, using studies from different entities at the ecumenical level and revealing their main benefits of application and contribution. Furthermore, based on the systematic and methodical review of scientific articles from databases indexed to multiple journals, which are registered and organized in databases such as WOS and SCOPUS, thus theorizing their authors and perspectives. For this study, the documentary analysis technique and the data collection guide were considered as an instrument; in accordance with the PRISMA method. Finally, it is concluded that process management are methods available in an organization to provide effective results using resources efficiently, with dimensions of analysis, monitoring, and process improvements, contributing to organizational and strategic productivity; Likewise, the quality of the service is user satisfaction when judging the value of some service, dimensioning, analyzing needs, as well as evaluating, supervising and improving the service, fulfilling needs with knowledge of their expectations.
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
Copyright © by EnPress Publisher. All rights reserved.