The freight transport chain brings together several types of players, particularly upstream and downstream players, where it is connected to both nodal and linear logistics infrastructures. The territorial anchoring of the latter depends on a good level of collaboration between the various players. In addition to the flow of goods from various localities in the area, the Autonomous Port of Lomé generates major flows to and through the port city of Lomé, which raises questions about the sustainability of these various flows, which share the road with passenger transport flows. The aim of this study is to analyse the challenges associated with the sustainability of goods flows. The methodology is based on direct observations of incoming and outgoing flows in the Greater Lomé Autonomous District (DAGL) and semi-directive interviews with the main players in urban transport and logistics. The results show that the three main challenges to the sustainability of goods transport are congestion (28%), road deterioration (22%) and lack of parking space (18%).
This paper uses quantitative research methods to explore the differences in the impact of virtual influencers on different consumer groups in the context of technological integration and innovation. The study uses DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering technology to segment consumers and combines social media behavior analysis with purchase records to collect data to identify differences in consumer behavior under the influence of virtual influencers. Consumers' emotional resonance and brand awareness information about virtual influencers are extracted through sentiment analysis technology. The study finds that there are significant differences in the influence of virtual influencers on different consumer groups, especially in high-potential purchase groups, where the influence of virtual influencers is strong but short-lived. This paper further explores the deep integration of virtual influencer technology with new generation information technologies such as 5G and artificial intelligence, and emphasizes the importance of such technological integration in enhancing the endogenous and empowering capabilities of virtual influencers. The research results show that technological integration and innovation can not only promote the development of virtual influencers, but also provide new technical support for infrastructure construction, especially in the fields of smart cities and industrial production. This paper provides a new theoretical perspective for the market application of virtual influencers and provides practical support for the application of virtual technology in infrastructure construction.
The intensification of urbanization worldwide, particularly in China, has led to significant challenges in maintaining sustainable urban environments, primarily due to the Urban Heat Island (UHI) effect. This effect exacerbates urban thermal stress, leading to increased energy consumption, poor air quality, and heightened health risks. In response, urban green spaces are recognized for their role in ameliorating urban heat and enhancing environmental resilience. This paper has studied the microclimate regulation effects of three representative classical gardens in Suzhou—the Humble Administrator's Garden, the Lingering Garden and the Canglang Pavilion. It aims to explore the specific impacts of water bodies, vegetation and architectural features on the air temperature and relative humidity within the gardens. With the help of Geographic Information System (GIS) technology and the Inverse Distance Weighted (IDW) spatial interpolation method, this study has analyzed the microclimate regulation mechanisms in the designs of these traditional gardens. The results show that water bodies and lush vegetation have significant effects on reducing temperature and increasing humidity, while the architectural structures and rocks have affected the distribution and retention of heat to some extent. These findings not only enrich our understanding of the role of the design principles of classical gardens in climate adaptability but also provide important theoretical basis and practical guidance for the design of modern urban parks and the planning of sustainable urban environments. In addition, the study highlights GIS-based spatial interpolation as a valuable tool for visualizing and optimizing thermal comfort in urban landscapes, providing insights for developing resilient urban green spaces.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Piano sight-reading competency, which is highly important for an aspiring musician who needs to face diverse musical problems, is an integral part of becoming a smooth performer. The aims of this systematic literature review concerning piano sight-reading pedagogy approaches between 2019 and 2024 are to determine the strengths and weaknesses of the peer-reviewed literature. The article examines cognitive, behavioral, and technological methods and tools of enhancing learning outcomes, based on the concept of cognitive load, constructivism, and behaviorist perspective. The cognitive strategies highlight the role of hand-eye coordination, short-term memory, and visual process; while the behavioral ones emphasize the importance of daily practice and feedback from the teacher. Emerging technologies, like VR and AI-driven platforms, are redefining education and offering unique ways of learning and forgetting. While achievements of the past are notable, challenges such as access and efficacious long-term approaches remain. The next step of research should be to focus on sustainable teaching methods and international perspectives to achieve homogeneous and effective sight-reading teaching worldwide. This essay provides an overview of integrated and adaptable teaching strategies that combine both traditional and modern tools for the development of versatile and confident musicians' skills.
Copyright © by EnPress Publisher. All rights reserved.