The expanding adoption of artificial intelligence systems across high-impact sectors has catalyzed concerns regarding inherent biases and discrimination, leading to calls for greater transparency and accountability. Algorithm auditing has emerged as a pivotal method to assess fairness and mitigate risks in applied machine learning models. This systematic literature review comprehensively analyzes contemporary techniques for auditing the biases of black-box AI systems beyond traditional software testing approaches. An extensive search across technology, law, and social sciences publications identified 22 recent studies exemplifying innovations in quantitative benchmarking, model inspections, adversarial evaluations, and participatory engagements situated in applied contexts like clinical predictions, lending decisions, and employment screenings. A rigorous analytical lens spotlighted considerable limitations in current approaches, including predominant technical orientations divorced from lived realities, lack of transparent value deliberations, overwhelming reliance on one-shot assessments, scarce participation of affected communities, and limited corrective actions instituted in response to audits. At the same time, directions like subsidiarity analyses, human-cent
Maps of forest stand condition—the current phase of the forest-forming process—will be useful for foresters in their forest management in addition to the forest planning and cartographic materials. The mapping methodology was applied in the test area of the Bolshemurtinsky forest district of the Krasnoyarsk region, which is typical for the southern taiga forests of East Siberia. Source data for mapping was obtained on the basis of descriptions of the forest subcompartments on the GIS attribute table of the forest district. Forest stand confinement to the terrain relief indicators was identified on the basis of the SRTM 55-01 digital terrain model data. Spatial analysis has been performed using the ArcGIS Spatial Analyst module. Mapping capability has been shown not only for the year of forest inventory but also for the earlier period of time. To determine the predominant species and the age of the 100-year-old forest stand, a scheme was proposed in which the conceivable options are typified depending on the succession trend, the forest stand age prior to disturbance, and the period of reforestation. Map fragments of the test area as of 2006—the year of forest inventory—and as of 1906—the year of the intensive colonization beginning in southern Siberia—are demonstrated. Maps of forest condition in the test area represent successions that are typical in the southern taiga forests of Siberia: post-harvest, pyrogenic, and biogenic. The methodology of forest condition mapping is universal.
A large number of consumers in Malaysia are resistant towards new technology and prefer instead the tried and tested way of doing things. It is worth examining if local consumers are in fact ready to digitize and accept technology in their day-to-day dealings. A behavioral study was developed to gauge the digital maturity and tech preparedness of Malaysian consumers with regards to loyalty and how this will reflect an individual’s predisposition in his or her ability and eventual use of a new technology. This study latched on to the concept of tech preparedness. A conceptual framework was developed after reviewing existing scholarly literature. This was then tested through a survey using a convenience sample from 383 SME consumers in the country. This study also looked at the difference in tech preparedness among gender, age and level of education. During the Investigation regarding Industry 4.0, it was noticed that there are few studies dealing with this segment of companies in Malaysia. In addition in team of this research about customer perspective the amount of studies become more less and also because of the Shortage of the necessary skills, talents and knowledge for adopting Industry 4.0, the number Malaysian company ready to move or already move to industry 4.0 is quit few and it seems to cause less experience using new technology among Malaysian customers.
Modernizing the Internet of Things in Islamic boarding schools is essential to eliminate backwardness and skills gaps. Santri must have cognitive, affective, psychomotor, and creative intelligence to be ready to enter the industrial and business world. The students’ need for information transparency can be resolved using technology. This is because the empowerment of the Internet of Things has become a separate part of Islamic boarding school activities with students who can connect in real-time. This research aims to analyze current conditions and stakeholder involvement regarding the application of the Internet of Things in innovative Islamic boarding school services in the era of disruption. The Descriptive Method and Individual Interest Matrix Analysis were used by involving 130 respondents from the internal environment of the Daarul Rahman Islamic boarding school and completing the questionnaire through FGD (Focus Group Discussion) with the leaders of the Daarul Rahman Islamic boarding school. The results show that the current condition of Islamic boarding schools is that most need to learn or understand IoT, even though they are enthusiastic about learning new things and flexible in accepting change. The challenges required in implementing IoT are financial investment, increasing human resources through training, and synergy between Islamic boarding school policy makers. Mutually supportive and solid conditions are required between foundations, school principals, and school committees to implement IoT at Daarul Rahman Islamic Boarding School. Collaboration with various parties is needed because the implementation of IoT cannot be done alone by Islamic boarding schools but with the support of various related parties.
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
Copyright © by EnPress Publisher. All rights reserved.