This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
This research explores the role of digital economy in driving agricultural development in the BIMSTEC region, which includes Thailand, Myanmar, Sri Lanka, Nepal, India, Bangladesh and Bhutan (with Bhutan excluded due to data limitations) with a particular focus on mobile technologies, computing capacity and internet connectivity which were the most readily available data points for BIMSTEC. Using a combination of document analysis, and panel data analysis with the data covering 10 years (2012–2021), the study examines the interplay of key digital technologies with agricultural growth while controlling for factors including water usage, fertilizer consumption, and land temperature and agricultural land area. The analysis incorporates additional variables such as infrastructure development, credit to agriculture, investment in agricultural research, and education level. The findings reveal a strong positive correlation between mobile technology, Internet and computing capacity in BIMSTEC. This study underscores that digital tools are pivotal in enhancing agricultural productivity, yet their impact is significantly combined with investment in infrastructure and education. This study suggests that digital solutions, when strategically integrated with broader socio-economic factors can effectively challenges in developing countries, particularly in rural and underserved regions. This research contributes to the growing body of literature on digital economy in agriculture, highlighting how digital technologies can foster agricultural productivity in developing countries.
Over the past twenty years, service organizations have adopted total quality management to enhance their service quality, significantly impacting business performance, customer satisfaction, and profitability. This study delves into policy development of sustainable quality management theory, benefits, and various service components, while reviewing its implementation in services industries and policy innovation. The concept of Sustainable Quality Management 4.0 (SQM 4.0) integrates sustainable management, traditional quality management, and Quality 4.0 principles to optimize resources, reduce environmental impacts, and enhance decision-making through Industry 4.0, IoT, AI, and big data analytics. The findings offer valuable framework and policy insights for managers and practitioners on quality management and service systems, providing an implementation framework for Sustainable Quality Management in the service sector. The paper outlines comprehensive elements and strategies for implementation as a SQM framework for attaining sustainable quality management in the services industry.
Our study investigates the relationship between firm profitability, board characteristics, and the quality of sustainability disclosures, while examining the moderating effects of financial leverage and external audit assurance. A key focus is the distinction between Big 4 and non-Big 4 audit firms. Using data from Malaysia’s top 100 publicly listed organizations from 2018 to 2020, we analyze sustainability reports based on the Global Reporting Initiative (GRI) standards. Unexpectedly, our results indicate a negative association between firm profitability and board characteristics, challenging traditional assumptions. We find that non-Big 4 audit firms significantly enhance sustainability disclosure quality, contradicting the widely held belief in the superiority of Big 4 firms. Our finding introduces the “Big 4 dilemma” in the Malaysian context and calls for a reassessment of audit firm selection practices. Our study offers new perspectives on the strategic role of board composition and audit firm selection in advancing sustainability disclosures, urging Malaysian organizations to evaluate audit firms on criteria beyond the global prestige of Big 4 firms to improve sustainability reporting.
Copyright © by EnPress Publisher. All rights reserved.