Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
This cross-sectional study examines the knowledge, perception, and practice of health professions students and academics in Jordan concerning halal pharmaceuticals. Health professions students and academics from various universities in Jordan were surveyed using a structured questionnaire. Data analysis included descriptive statistics and inferential tests to identify factors affecting knowledge, perception, and practice. Participants had a high level of awareness regarding general halal and haram concepts, but there was relatively lower awareness of the term “halal pharmaceuticals” and detailed information about non-halal ingredients. Knowledge scores varied between students and academics, with academics scoring higher. Participants exhibited positive perceptions, acknowledging the importance of knowledge about halal pharmaceuticals and patients’ rights to inquire about medication sources and ingredients. Concerns were raised about the potential controversy surrounding the topic. This research contributes to understanding the role of halal pharmaceuticals in healthcare, particularly in predominantly Muslim countries. The findings highlight the importance of integrating education on halal pharmaceuticals into healthcare curricula, emphasizing patient-centered care, and addressing cultural and religious sensitivity. There is a need for tailored educational approaches and sensitivity training to bridge the gap between knowledge and practice.
The purpose of this study is to explore new financial product’s impact on the behaviour of individual investors. To analyze investors’ risk and return expectations, this article investigates trading volumes before and after the introduction of financial product innovation. An event research technique was used to gather data from the National Stock Exchange. Data was analyzed using descriptive statistics and the Sharpe ratio approach, which were provided by different investors. The research results highlight that individual investors’ overreaction behaviour is brought out by financial product innovation. Furthermore, the study’s results imply that rising trading volumes are not entirely explained by updated risk-adjusted returns and that new financial products lead to excessive trading by investors and lowering returns. Higher trading volumes are not explained by better risk-adjusted returns. Young investors often respond irrationally to information offered by financial advisors, resulting in short-term gains at the expense of long-term gains. The study demonstrates that the development of innovative financial products does not always result in investors’ long-term prosperity. Worse outcomes and excessive trading could follow from it. The paper concludes by providing various real-world implications that the benefits and drawbacks of innovative financial products should be spelled out in detail by financial institutions and representatives. his research contributes to the implementation of individual investors’ overreaction behaviour that is brought out by financial product innovation. It highlights that higher trading volumes are not explained by better risk-adjusted returns.
The advent of Artificial Intelligence (AI) has transformed Learning Management Systems (LMSs), enabled personalized adaptation and facilitated distance education. This study employs a bibliometric analysis based on PRISMA-2020 to examine the integration of AI in LMSs from an educational perspective. Despite the rapid progress observed in this field, the literature reveals gaps in the effectiveness and acceptance of virtual assistants in educational contexts. Therefore, the objective of this study is to examine research trends on the use of AI in LMSs. The results indicate a quadratic polynomial growth of 99.42%, with the years 2021 and 2015 representing the most significant growth. Thematic references include authors such as Li J and Cavus N, the journal Lecture Notes in Computer Science, and countries such as China and India. The thematic evolution can be observed from topics such as regression analysis to LMS and e-learning. The terms e-learning, ontology, and ant colony optimization are highlighted in the thematic clusters. A temporal analysis reveals that suggestions such as a Cartesian plane and a league table offer a detailed view of the evolution of key terms. This analysis reveals that emerging and growing words such as Learning Style and Learning Management Systems are worthy of further investigation. The development of a future research agenda emerges as a key need to address gaps.
Increasing the environmental friendliness of production systems is largely dependent on the effective organization of waste logistics within a single enterprise or a system of interconnected market participants. The purpose of this article is to develop and test a methodology for evaluating a data-based waste logistics model, followed by solutions to reduce the level of waste in production. The methodology is based on the principle of balance between the generation and beneficial use of waste. The information base is data from mandatory state reporting, which determines the applicability of the methodology at the level of enterprises and management departments. The methodology is presented step by step, indicating data processing algorithms, their convolution into waste turnover efficiency coefficients, classification of coefficient values and subsequent interpretation, typology of waste logistics models with access to targeted solutions to improve the environmental sustainability of production. The practical implementation results of the proposed approach are presented using the production example of chemical products. Plastics production in primary forms has been determined, characterized by the interorganizational use of waste and the return of waste to the production cycle. Production of finished plastic products, characterized by a priority for the sale of waste to other enterprises. The proposed methodology can be used by enterprises to diagnose existing models for organizing waste circulation and design their own economically feasible model of waste processing and disposal.
Copyright © by EnPress Publisher. All rights reserved.