This paper presents the state of displacement of a multilayered composite laminate subjected to transverse static load with varying balance, symmetric and anti-symmetric angle-ply and cross-ply staking sequences. Higher-order shear deformation theory (HSDT) is considered in the finite element formulation of nine-noded isoparametric element with seven degrees of freedom at each node. The finite element formulation is transformed into computer codes. A convergence study is carried out first to obtain the optimal mesh size for minimizing the computational time. The maximum deflection at the center of plate for both fixed and simply supported edges is verified with reported literature and a good conformity is found. An attempt has been made to observe the minimum value of maximum deflection in the laminate for attaining the maximum strength of laminate with a suitable combination of stacking sequences with a constant volume of material.
Municipal authorities in industrialized and in developing countries face unceasingly the issues of congestion, insufficiency of transport means capacity, poor operability of transport systems and a growing demand for reliable and effective urban transport. While the expansion of infrastructure is generally considered as an undesirable option, in specific cases, when short links or ring roads are missing, new infrastructure projects may provide beneficial solutions. The upgrading and renewal of existing networks is always a challenge to the development of a modern city and the welfare of citizens. Central governance and management of transport systems, the establishment of smart and digital infrastructure, advanced surveillance and traffic monitoring, and intra-city energy-harvesting policy are some of the steps to be taken during the transition to a green and sustainable urban future.
Municipal authorities have also to consider other options and strategies to create a citizen-friendly setting for mobility: diminish the need for trips (digitalization of services, e-commerce, etc.), shift from private to public transport and transform the urban form to promote non-motorized transport in favor of the natural environment and public health. A citizen-friendly policy based on the anticipation of future needs and technological development seems to be a requisite for European cities searching for a smooth integration of their networks into urban space.
In order to explore the influence of the ferroelectric surface on the structure and properties of semiconductor oxides, the growth of CdS nanocrystals was regulated and controlled by taking single-crystal perovskite PbTiO3 nanosheets as the substrate through a simple hydrothermal method. Through composition design, a series of PbTiO3-CdS nanocomposite materials with different loading concentrations were prepared, and their microstructure and photocatalytic properties were systematically analyzed. Studies show that in the prepared product, CdS nanoparticles selectively grow on the surfaces of PbTiO3 nanosheets, and their morphology is affected by the exposed surfaces of PbTiO3 nanosheets. There is a clear interface between the PbTiO3 substrate and CdS nanoparticles. The concentration of the initial reactant and the time of hydrothermal reaction also significantly affect the crystal morphology of CdS. Photocatalysis studies have shown that the prepared PbTiO3-CdS nanocomposite material has a significant degradation effect on 10 mg/L of Rhodamine B aqueous solution. The degradation efficiency rises with the increase of CdS loading concentration. When degrading 10 mg/L Rhodamine B aqueous solution, the PbTiO3-CdS sample with a mass fraction of 3% can reach a degradation rate of 72% within 120 min.
In order to scientifically evaluate the germplasm resources of Momordica charantia in southern China, the diversity, correlation and cluster analysis were carried out on the main botanical characters of 56 Momordica charantia varieties, such as melon length, melon transverse diameter, single melon weight, internode length, stem diameter, leaf length and leaf width. The results showed that the variation coefficients of 7 agronomic characters of 56 Momordica charantia varieties ranged from 8.81% to 19.44%, the average variation coefficient was 14.21%, the maximum variation coefficient of single melon weight was 19.44%, and the minimum variation coefficient of melon cross diameter was 8.81%. The correlation analysis showed that there were correlations among the agronomic traits. The positive correlation coefficient between leaf length and leaf width was up to 0.978, and the negative correlation coefficient between single melon weight and internode length was up to 0.451. The 56 varieties were divided into 3 groups by cluster analysis, of which 92.86% of the materials were concentrated in the first and second groups, and there were only 4 materials in the third group. The results can provide a reference for the cultivation, utilization and genetic improvement of Momordica charantia resources in southern China.
The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the quality, physiological and biochemical indexes of Cucumber Fruits during storage were studied by using the quadratic regression orthogonal rotation combination design. The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the chilling injury, hardness, weightlessness rate, polyphenol oxidase (PPO), catalase (CAT), peroxidase (POD), H2O2, super oxygen anion free radical (O2-), ASA and GSH were determined. The results showed that heat treatment could inhibit chilling injury, while heat treatment combined with 4 ℃ low temperature storage could effectively inhibit the decline of fruit hardness and weight loss rate, delay the increase of peroxidase (POD) and polyphenol oxidase (PPO) activities, inhibit the increase of H2O2 and superoxide anion free radical O2- and significantly inhibit the browning of cucumber, delay the decline of ascorbic acid and maintain the content of GSH, it was beneficial to adjust the balance of active oxygen system. The results showed that under the storage condition of 4 ℃, the hot water treatment condition of cucumber was 39.4 ℃ and 24.3 min, which could delay the senescence of cucumber fruit and better maintain the quality of cucumber fruit.
Surface-enhanced Raman scattering (SERS) spectrum has the characteristics of fast-detection, high-sensitivity and low-requirements for sample pretreatment. It plays a more and more important role in the detection of organic pollutants. In this study, MIL-101 and Au nanoparticles were prepared by hydrothermal method and aqueous solution reduction method respectively, and MIL-101/Au composite nanoparticles were prepared by electrostatic interaction. The SERS properties of the composite substrate were optimized by adjusting the size of Au nanoparticles and the surface distribution density of MIL-101 nanoparticles. The detection limit of Rhodamine 6G (R6G) for the composite substrate with the optimal ratio was investigated, which was as low as 10–11 M. It is proved that MIL-101/Au composite nanoparticles have high sensitivity to probe molecules. When they are applied to the detection of persistent organic pollutants, the detection limit for fluoranthene can reach 10–9 M and for 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) can reach 10–5 M.
Copyright © by EnPress Publisher. All rights reserved.