The coronavirus pandemic has reinforced the need for sustainable, smart tourism and local travel, with rural destinations gaining in their popularity and leading to increased potential of smart rural tourism. However, these processes need adjustments to the current trends, incorporating new transformative business concepts and marketing approaches. In this paper we provide real life examples of new marketing approaches, together with new business models within the context of the use of new digital technologies. Via hermeneutic research approach, consisting of the secondary analysis of the addressed subject of smart rural tourism in adversity of the COVID-19 and 6 semi-structured interviews, the importance of technology is underscored in transforming rural tourism to smart rural tourist destinations. The respondents in the interview section were chosen based on their direct involvement in the presented examples and geographical location, i.e. France, Slovenia and Spain, where presented research examples were developed, concretely within European programmes, i.e. Interreg, Horizon and Rural Development Programme (RDP). Interviews were taking place between 2022 and 2023 in person, email or via Zoom. This two-phased study demonstrates that technology is important in transforming rural tourism to smart tourist destinations and that it ushers new approaches that seem particularly useful in applying to rural areas, creating a rural digital innovation ecosystem, which acts as s heuristic rural tourist model that fosters new types of tourism, i.e. smart rural tourism.
Rural tourism plays a crucial role in rural development in Indonesia by providing employment opportunities, livelihood, infrastructure, cultural preservation, and environmental preservation. However, it is prone to external shocks such as natural disasters, public health events, and volatility in the national and global economy. This study measures the resilience of rural tourism to external shocks caused by the COVID-19 pandemic in 24 rural tourism destinations in Indonesia covering four years from 2019 to 2022. A synthetic composite index of the Adjusted Mazziotta-Pareto index (AMPI) is used to measure rural tourism resilience followed by clustering analysis to determine the typology of the resilience. The AMPI measure is also compared with the conventional Mazziotta-Pareto index (MPI) method. The resilience index is composed of capacity and performance components related to resilience. The results show that in the first year of COVID-19, most tourism villages in Indonesia were severely affected by the pandemic, yet they were able to recover afterward, as indicated by positive differences in the AMPI index before and after COVID-19. Thus, rural tourism villages in Indonesia have a strong capacity and performance to recover from pandemic shock. Lessons learned from this analysis can be applied to policies related to rural tourism resilience in developing countries.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
The prospects of digital infrastructure in promoting rural economic growth and development are by and large immense. The paper found that rural development is considerably important for economic development and for achievement of sustainable livelihoods that increases people’s ability to achieve good health and wellbeing that enable the achievement of sustainable development. The paper found that digital imbalance and digital illiteracy in the rural areas hinder implementation of digital infrastructure to lead to rural economic growth. Digital infrastructure is the source of economic opportunities that enables local people in the rural areas to be more creative in achieving development success. It enables them to have a unique sense of place and fashioning of vibrant economic and financial opportunities that ensure the achievement of sustainable rural economic development. However, the paper found that the application of digital infrastructure to South Africa’s rural areas in the bid to promote rural economic growth has been hindered by factors like the digital divide, financial constraints, digital illiteracy and the failure to own a smart phone. These factors hinder digital infrastructure from leading to sustainable rural economic development and growth. The paper used secondary data gathered from existing literature. The use of qualitative research methodology and document and content analysis techniques became vital in the process of collecting and analyzing collected data.
Copyright © by EnPress Publisher. All rights reserved.