Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
The boom in nanotechnology over the last three decades is undeniable. Responsible for this interest in nanomaterials are mainly the nanostructured forms of carbon, since historically they were the ones that inaugurated the study of nanomaterials with the discovery of fullerenes in 1985 and carbon nanotubes in 1991. Although a variety of techniques exist to produce these materials, chemical vapor deposition (CVD) is particularly valuable as it allows the production of a wide variety of carbon nanostructures, is versatile, scalable, easy to implement and relatively low cost. This review article highlights the importance of CVD and details its principles, operating conditions and parameters, as well as its main variants. A description of the technique used to produce fullerenes, nano-ceramics, carbon nanotubes, nanospheres, graphene and others is made, emphasizing the specific parameters for each synthesis.
Open pitaya (Stenocereus thurberi) flowers were marked at 10, 20, 30 and 40 days after floration (DAF). When fruit were formed, they were collected from each of the dates with the objective of evaluating physical, physiological and quality changes before and after harvest. In fruits with different DAF, the analyses of fruit size (diameter and length), weight, density, firmness, color in pulp and peel (L*, a* and b*), respiration rate (CO2) and ethylene production were carried out. In the case of ripe and overripe fruit, in addition to the variables mentioned above, pH, percentage of total soluble solids TSS and total acidity (% citric acid equivalents) were evaluated. Fruit with 40 DAF were stored for up to 14 days at 25 ℃ and 80% RH to evaluate daily changes in respiration rate and ethylene production. It was found that during development the fruit tended to grow more in length than in diameter. In color, the best indicators of changes during fruit development were the parameters L* and b* for peel and for flesh L* and a*. For firmness in pitaya fruits, no significant differences were found with the methodology used. Changes in ethylene production and respiration rate during storage and development showed the usual behavior of climacteric fruits. Pitaya fruits with 40 FDD presented quality characteristics similar to those accepted by the consumer for this type of fruit. It is concluded that it is possible to evaluate the different stages of development in DDF of pitaya fruit based on the changes of the color space variables L*, a* and b*, in addition to the fact that the fruit follows the classical climacteric behavior.
With the purpose of strengthening the knowledge and prevention of landslide disasters, this work develops a methodology that integrates geomorphological mapping with the elaboration of landslide susceptibility maps using geographic information systems (GIS) and the multiple logistic regression method (MLR). In Mexico, some isolated works have been carried out with GIS to evaluate slope stability. However, to date, no practical and standardized method has been developed to integrate geomorphological maps with landslide inventories using GIS. This paper shows the analysis carried out to develop a multitemporal landslide inventory together with the morphometric analysis and mapping technique for the El Estado River basin where, selected as the study area, is located on the southwestern slope of the Citlaltepetl or Pico de Orizaba volcano. The geological and geomorphological factors in combination with the high seasonal precipitation, the high degree of weathering and the steep slopes predispose its surfaces to landslides. To assess landslide susceptibility, a landslide inventory map was prepared using aerial photographs, followed by geomorphometric mapping (altimetry, slopes and geomorphology) and field work. With this information, landslide susceptibility was modeled using multiple logistic regression (MLR) within a GIS platform and the landslide susceptibility map was obtained.
Land suitability analysis using geographic information systems (GIS) is one of the most widely used method today. In this type of studies, GIS and geo-spatial statistical tools are used to evaluate land units and present the results in suitability maps. The present work aims to characterize the suitability of soils in the province of Catamarca for pecan nut production according to the variables: rockiness, salinity, risk of water-logging, depth, texture and drainage described in the Soil Map of Argentina at a scale of 1:500,000 published by the National Institute of Agricultural Technology. A classification of the suitability of the soil cartographic units was made according to crop requirements, applying the methodology proposed by FAO. The standardization of variables made by omega score and the calculation of the spatial classification score were carried out as a result of the synthesis of the spatial distribution of soil suitability. The applied methodology allowed obtaining the soil suitability map resulting in a total of 60,662 km2 suitable for pecan nut production, which accounts for 59.8% of the total area of the province.
Copyright © by EnPress Publisher. All rights reserved.