This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
Objective: To study the changes of growth, physiological and absorption characteristics of Pinus bungeana under ozone (O3) stress, to elucidate the correlations among the indicators, and to determine its degree of response to O3. Methods: The growth, physiological characteristics and O3 uptake capacity of Pinus bungeana seedlings were measured in an open-top O3 fumigation manual control experiment with three concentration gradients (NF: normal atmospheric O3 concentration, NF40: normal atmospheric O3 concentration plus 40 nmlol/mol; NF80: normal atmospheric O3 concentration plus 80 nmol/mol), and the relationships between the characteristics of Pinus bungeana under different O3 concentrations were investigated with correlation analysis, redundancy analysis and analysis of variance. Results: (1) Plant height growth (ΔH), diameter growth at 50 cm (ΔDBH), stomatal size (S), stomatal density (M), stomatal opening (K), stomatal conductance (Gs), net photosynthetic rate (Pn), transpiration rate (Et), water use efficiency (WUE), maximum photochemical efficiency (Fv/Fm), chlorophyll content (CHL), whole tree water consumption (W), and O3 uptake rate () all decreased with the increase of O3 concentration; while intercellular CO2 concentration () and relative conductivity (L) increased with the increase of O3 concentration; (2) growth indicators of Pinus bungeana under O3 stress (ΔH, ΔDBH) were the most correlated with O3 uptake status (, W), followed by photosynthetic indicators (, WUE, ,, ) and growth indicators (ΔH, ΔDBH) and stomatal characteristics (K, M, S) under O3 stress, some physiological indicators (L, ) were relatively weakly correlated with photosynthesis (, WUE,,, ) and stomatal (K, M, S); (3) all the indicators of Pinus bungeana were significantly different under O3 treatments of NF and NF80 (P < 0.05), ΔH, ΔDBH, M, CHL, , , W and were most significantly different under NF and NF40 treatments, and K, S, WUE, , , , L were more significantly different under NF40 and NF80 treatments. Conclusion: The experiment proved that the growth of Pinus bungeana was slowed, photosynthetic capacity was reduced, and the absorption capacity of O3 was further reduced by long-term exposure to high concentration of O3. The growth of Pinus bungeana was most correlated with the changes of O3 absorption characteristics, and the stomatal characteristics were most correlated with photosynthetic physiological characteristics, and the reduction of photosynthetic capacity etc. further led to the curtailment of its growth.
Spectrum map is the foundation of spectrum resource management, security governance and spectrum warfare. Aiming at the problem that the traditional spectrum mapping is limited to two-dimensional space, a three-dimensional spectrum data acquisition and mapping system architecture for the integration of space, sky and earth is presented, and a spectrum map reconstruction scheme driven by propagation model is proposed, which can achieve high-precision three-dimensional spectrum map rendering under the condition of sparse sampling. The spectrum map reconstructed by this method in the case of single radiation source and multiple radiation sources is in good agreement with the theoretical results based on ray tracing method. In addition, the measured results of typical scenes further verify the feasibility of this method.
Horticulture is a widespread activity in family farming in the Transamazonian region—Pará, with emphasis on production aimed at the family’s own consumption. The lettuce cultivar Vanda (Lactuca sativa L.) represents a significant part of this production, which prioritizes the use of internal labor. The main objective of this work was to evaluate the development of lettuce CV Vanda grown in beds using organic compost and chemical fertilization (NPK). The criteria considered to evaluate this performance were: Root system development, plant height and total fresh mass production. The best averages in relation to root development occurred in the plots cultivated with organic compost in the proportion of 5 kg/m2, due to its characteristics as a fertilizer and soil conditioner. The cultivation with the use of NPK provided the best averages in relation to the production of total fresh mass and plant height, results that were mainly attributed to the extra supply of nitrogen in the covering fertilization, which consisted in the addition of 10 g urea per square meter via soil. Statistical analysis showed no statistically significant difference regarding plant height for both treatments. And in relation to root development, the difference was statistically significant.
The wet saturated flue gas discharged by coal-fired utility boilers leads to a large amount of low-temperature waste heat loss. Inorganic ceramic membrane is acid-base resistant and has strong chemical stability. It is an ideal material for recovering low-temperature waste heat from flue gas. The experiment of waste heat recovery of flue gas was carried out with inorganic ceramic membrane as the core, and the characteristic parameters of low-temperature flue gas at the tail of the boiler were analyzed; taking 316 L stainless steel as the comparative object, the strengthening effect of inorganic ceramic film on improving heat recovery power and composite heat transfer coefficient was discussed. The results show that the waste heat recovery of flue gas is mainly the evaporation latent heat recovery of water, accounting for about 90%; circulating water is used as cooling medium, and the waste heat recovery capacity of flue gas is stronger; compared with circulating water, when air is used as the cooling medium, the effect of inorganic ceramic membrane flue gas waste heat recovery is more significant, and the enhancement coefficient is as high as 9; increasing the flue gas flow is helpful to improve the heat recovery power and composite heat transfer coefficient; at the same time, inorganic ceramic membrane can also recover condensate with high water quality. The results of this paper can provide a reference for the application of inorganic ceramic membrane in flue gas waste heat recovery.
This paper assesses South Africa’s massive infrastructure drive to revive growth and increase employment. After years of stagnant growth, this is now facing a deep economic crisis, exacerbated by the COVID-19 pandemic. This drive also comes after years of weak infrastructure investment, widening the infrastructure deficit. The plan outlines a R1 trillion investment drive, primarily from the private sector through the Infrastructure Fund over the next 10 years (Government of South Africa, 2020). This paper argues that while infrastructure development in South Africa is much-needed, the emphasis on de-risking for private sector buy-in overshadows the key role the state must play in leading on structurally transforming the economy.
Copyright © by EnPress Publisher. All rights reserved.