Inequity in infrastructure distribution and social injustice’s effects on Ethiopia’s efforts to build a democratic society are examined in this essay. By ensuring fair access to infrastructure, justice, and economic opportunity, those who strive for social justice aim to redistribute resources in order to increase the well-being of individuals, communities, and the nine regional states. The effects that social inequity and injustice of access to infrastructure have on Ethiopia’s efforts to develop a democratic society were the focus of the study. Time series analysis using principal component analysis (PCA) and composite infrastructure index (CII), as well as structural equation modeling–partial least squares (SEM-PLS), were necessary to investigate this issue scientifically. This study also used in-depth interviews and focus group discussions to support the quantitative approach. The research study finds that public infrastructure investments have failed or have been disrupted, negatively impacting state- and nation-building processes of Ethiopia. The findings of this research also offer theories of coordination, equity, and infrastructure equity that would enable equitable infrastructure access as a just and significant component of nation-building processes using democratic federalism. Furthermore, this contributes to both knowledge and methodology. As a result, indigenous state capability is required to assure infrastructure equity and social justice, as well as to implement the state-nation nested set of policies that should almost always be a precondition for effective state- and nation-building processes across Ethiopia’s regional states.
A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
The coupling coordination degree model is used to analyze the change law of the inherent coupling relationship between the forest economy and the ecological environment system in Heilongjiang Province from 2006 to 2018 and its causes. The results show that by combining the coupling relationship with the relative priority of under-forest economic development, the coupling relationship change can be divided into three stages, the coupling coordination degree from 2006 to 2009 is mainly on the verge of imbalance, and the under-forest economic development lags behind the development of the ecological environment. From 2010 to 2012, the coupling coordination degree changed from the reluctant coupling stage to the stage on the verge of imbalance, and the forest economy was ahead of the ecological environment development. From 2013 to 2018, the degree of coupling and coordination was in the reluctant coupling stage, and the under-forest economy and the ecological environment continued to develop in synchronize and in harmony. Therefore, according to the research results, it is proposed to establish the principle of ecological priority, adhere to the development of characteristics, improve the level of science and technology, and rationally develop the under-forest economic industry, so as to promote the coupling and coordinated development of the under-forest economy and ecological environment system in Heilongjiang Province.
This paper presents a brief review of risk studies in Geography since the beginning of the 20th century, from approaches focused on physical-natural components or social aspects, to perspectives that incorporate a systemic approach seeking to understand and explain risk issues at a spatial level. The systemic approach considers principles of interaction between multiple variables and a dynamic organization of processes, as part of a new formulation of the scientific vision of the world. From this perspective, the Complex Systems Theory (CST) is presented as the appropriate conceptual-analytical framework for risk studies in Geography. Finally, the analysis and geographic information integration capabilities of Geographic Information Systems (GIS) based on spatial analysis are explained, which position it as a fundamental conceptual and methodological tool in risk analysis from a systemic approach.
Copyright © by EnPress Publisher. All rights reserved.