South Korea’s over 3300 islands play vital roles in the nation’s geography, economy, culture, and national security. Despite their importance, these islands face significant challenges, including population decline, aging demographics, and a severe lack of healthcare, childcare, and education facilities. With only 20% of inhabited islands connected to the mainland by bridges, coastal ferries are the primary transportation mode. However, the infrequent ferry services and numerous intermediate stops cause considerable inconvenience. This study conducts an analysis of the coastal ferry route connectivity within the Mokpo Area, focusing on proposing improvements to enhance access to community infrastructure for local island residents. This study analyzes the Mokpo Area’s coastal ferry network, identifying Dochodo as a central hub island to improve connectivity for sustainable island development. By reorganizing routes around Dochodo with larger ferries for main routes and smaller ferries for local trips, the study aims to enhance service access and boost tourism for island communities.
This study aims to identify the causes of delays in public construction projects in Thailand, a developing country. Increasing construction durations lead to higher costs, making it essential to pinpoint the causes of these delays. The research analyzed 30 public construction projects that encountered delays. Delay causes were categorized into four groups: contractor-related, client-related, supervisor-related, and external factors. A questionnaire was used to survey these causes, and the Relative Importance Index (RII) method was employed to prioritize them. The findings revealed that the primary cause of delays was contractor-related financial issues, such as cash flow problems, with an RII of 0.777 and a weighted value of 84.44%. The second most significant cause was labor issues, such as a shortage of workers during the harvest season or festivals, with an RII of 0.773. Additionally, various algorithms were used to compare the Relative Importance Index (RII) and four machine learning methods: Decision Tree (DT), Deep Learning, Neural Network, and Naïve Bayes. The Deep Learning model proved to be the most effective baseline model, achieving a 90.79% accuracy rate in identifying contractor-related financial issues as a cause of construction delays. This was followed by the Neural Network model, which had an accuracy rate of 90.26%. The Decision Tree model had an accuracy rate of 85.26%. The RII values ranged from 68.68% for the Naïve Bayes model to 77.70% for the highest RII model. The research results indicate that contractor financial liquidity and costs significantly impact construction operations, which public agencies must consider. Additionally, the availability of contractor labor is crucial for the continuity of projects. The accuracy and reliability of the data obtained using advanced data mining techniques demonstrate the effectiveness of these results. This can be efficiently utilized by stakeholders involved in construction projects in Thailand to enhance construction project management.
Research on zakat has captured the attention of scholars since 1981, exhibiting an increasing trend in publications and citations. This trend presents an opportunity for the author to delve into zakat research. The primary aim of this study is to dissect 10 years of zakat research, spanning from 2013 to 2022, with a focus on evaluating past achievements, current research patterns, and potential future research directions. Utilising bibliometric analysis as the primary tool, this study has formulated seven research questions derived from the primary objective. Key findings indicate a consistent upward trajectory in both publication and citation rates over the past decade, with 2013 being a pivotal year. Notably, Malaysia, Indonesia, and Saudi Arabia emerged as the top three countries actively contributing to zakat research during this period. This study further outlines eight contemporary research trends, exploring various facets of zakat over the past decade. Additionally, this study identifies four prospective areas in zakat for future scholars to explore. This study’s outcomes offer three significant contributions: 1) signalling to scholars that zakat research continues to burgeon; 2) providing inspiration and ideas for current scholars; and 3) motivating future scholars to embark on research ventures in untapped areas within the realm of zakat.
Using the United Nations’ Online Services Indicator (OSI) as a benchmark, the study analyzes Jordan’s e-government performance trends from 2008 to 2022, revealing temporal variations and areas of discontent. The research incorporates diverse testing strategies, considering technological, organizational, and environmental factors, and aligns with global frameworks emphasizing usability, accessibility, and security. The proposed model unfolds in three stages: data collection, performing data operations, and target selection using the Generalized Linear Model (GLM). Leveraging web crawling techniques, the data collection process extracts structured information from the Jordanian e-government portal. Results demonstrate the model’s efficacy in assessing accessibility and predicting web crawler behavior, providing valuable insights for policymakers and officials. This model serves as a practical tool for the enhancement of e-government services, addressing citizen concerns and improving overall service quality in Jordan and beyond.
This research focuses on addressing critical driving safety issues on university campuses, particularly vehicular congestion, inadequate parking, and hazards arising from the interaction between vehicles and pedestrians. These challenges are common across campuses and demand effective solutions to ensure safe and efficient mobility. To address these issues, the study developed detailed microsimulation models tailored to the Victor Levi Sasso campus of the Technological University of Panama. The primary function of these models is to evaluate the effectiveness of various safety interventions, such as speed reducers and parking reorganization, by simulating their impact on traffic flow and accident risk. The models provide calculations of traffic parameters, including speed and travel time, under different safety scenarios, allowing for a comprehensive assessment of potential improvements. The results demonstrate that the proposed measures significantly enhance safety and traffic efficiency, proving the model’s effectiveness in optimizing campus mobility. Although the model is designed to tackle specific safety concerns, it also offers broader applicability for addressing general driving safety issues on university campuses. This versatility makes it a valuable tool for campus planners and administrators seeking to create safer and more efficient traffic environments. Future research could expand the model’s application to include a wider range of safety concerns, further enhancing its utility in promoting safer campus mobility.
Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
Copyright © by EnPress Publisher. All rights reserved.