Map is the basic language of geography and an indispensable tool for spatial analysis. But for a long time, maps have been regarded as an objective and neutral scientific achievement. Inspired by critical geography, critical cartography/GIS came into being with the goal of clarifying the discourse embedded in cartographic practice. Power relationship challenges the untested assumption in map representation that is taken for granted. After more than 40 years of debate and running in, this research field has initially shown an outline, and critical cartography/GIS has roughly formed two research directions: the deconstruction path mainly starts from the identity of cartography subject and the process of map knowledge production, and analyzes the inseparable relationship between cartography and national governance and its internal power mechanism respectively; the construction path mainly relies on cooperative mapping and anti-mapping to realize the reproduction of map data. Domestic critical cartography/GIS research has just started, and it is necessary to continue to absorb the achievements of critical geography and carry out research in different historical periods. The deconstruction research of different types of maps also needs to strengthen the in-depth bridging between the construction path and the deconstruction path, and to be more open to the public. Impartial map application research, and actively apply the research results to social practice.
The agronomic use of mushroom post-harvest substrates (SPCHs) in horticultural seedbeds could be an interesting alternative for the reuse of these wastes in line with the European circular economy strategy. This work evaluates the potential use of four treatments with different SPCHs, mushroom (-Ch), mushroom (-St), mushroom compost (-CO), and a mixture (SPCH-Ch and SPCH-St) as substrates for lettuce and chili pepper seed germination. The trial was carried out in a germination chamber using commercial compost as a control treatment. The evaluation was based on its chemical (salinity, N and C content), physical (bulk and real density, porosity and water retention) and plant effect (germination and biomass) characteristics. Of the chemical properties studied, the high salinity in SPCH-Ch and SPCH-CO was a limiting factor for the development of the horticultural species evaluated (electrical conductivity 1:2.5; p/v; ~11 dS m-1), and low germination percentages were observed. Regarding physical properties, porosity and water retention, the SPCH-CO, SPCH-St and mixture treatments presented some values outside the optimal range established for germination substrates. In the case of SPCH-St, its high C/N ratio could be a limitation for supplying N to the crop. In relation to biomass production (aerial and root) of lettuce and chili pepper, all the treatments evaluated obtained similar values to the control treatment. The mixed treatment presented the highest biomass values, significantly higher in the lettuce crop. In general, the mixed treatment proved to be the best alternative for use in the seedbed.
Magnetite magnetic nanoparticles (MNP) exhibit superparamagnetic behavior, which gives them important properties such as low coercive field, easy superficial modification and acceptable magnetization levels. This makes them useful in separation techniques. However, few studies have experimented with the interactions of MNP with magnetic fields. Therefore, the aim of this research was to study the influence of an oscillating magnetic field (OMF) on polymeric monolithic columns with vinylated magnetic nanoparticles (VMNP) for capillary liquid chromatography (cLC). For this purpose, MNP were synthesized by coprecipitation of iron salts. The preparation of polymeric monolithic columns was performed by copolymerization and aggregation of VMNP. Taking advantage of the magnetic properties of MNP, the influence of parameters such as resonance frequency, intensity and exposure time of a OMF applied to the synthesized columns was studied. As a result, a better separation of a sample according to the measured parameters was obtained, so that a column resolution (Rs) of 1.35 was achieved. The morphological properties of the columns were evaluated by scanning electron microscopy (SEM). The results of the chromatographic properties revealed that the best separation of the alkylbenzenes sample occurs under conditions of 5.5 kHz and 10 min of exposure in the OMF. This study constitutes a first application in chromatographic separation techniques for future research in nanotechnology.
Global navigation satellite system and its application fields are constantly expanding and deepening. This paper mainly introduces the current situation of global satellite navigation system and its application technology, development trend and application prospect. At the same time, this paper makes a comprehensive comparison of these navigation systems, analyzes the opportunities and challenges faced by China’s BeiDou satellite navigation system in the global context, and puts forward some suggestions for future work.
Developing countries have witnessed a rise in infrastructure spending over the past decades; however, infrastructure spending in most developed countries, particularly the US, continues to decline. As a result, in 2021, the US Congress passed a Bipartisan Infrastructure Bill, which invests $1 trillion in the country’s infrastructure every year. Using the principal component analysis and VAR estimation, we analyzed the impact of infrastructure (transportation and water, railway networks, aviation, energy, and fixed telephone lines) on economic growth in the US. Our findings show that infrastructure spending positively and significantly impacted economic growth. Additionally, the impulse response analysis shows that shocks to infrastructure spending had positive and persistent effects on economic growth. Our results suggest that infrastructure investment spurs economic growth. Based on our findings, sustained public spending on transport and water, railway networks, aviation, energy, and fixed telephone lines infrastructure by the US government will positively impact economic growth in the country. The study also suggests that policies that promote infrastructure spending, such as the Bipartisan Infrastructure Law (Infrastructure Investment and Jobs Act) passed by the US Congress, should be enhanced to boost economic growth in the US.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
Copyright © by EnPress Publisher. All rights reserved.