This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
The Sipongi System is essential in dealing with forest and land fires because this system provides real-time data that empowers stakeholders and communities to proactively overcome fire dangers. Its advantages are seen in its ability to provide detailed information regarding weather conditions, wind patterns, water levels in peatlands, air quality, and responsible work units. This data facilitates efficient decision-making and resource allocation for fire prevention and control. As an embodiment of Collaborative Governance, the Sipongi System actively involves various stakeholders, including government institutions, local communities, environmental organizations and the private sector. This cooperative approach fosters collective responsibility and accountability, improving fire management efforts. The Sipongi approach is critical in reducing forest and land fires in Indonesia by providing real-time data and a collaborative governance model. This results in faster response times, more effective fire prevention and better resource allocation. Although initially designed for Indonesia, the adaptable nature of the system makes it a blueprint for addressing similar challenges in other countries and regions, tailored to specific needs and environmental conditions. Qualitative research methods underlie this study, including interviews with key stakeholders and analysis of credible sources. Government officials, community leaders, environmental experts and organizational representatives were interviewed to comprehensively examine the mechanisms of the Sipongi System and its impact on forest and land fire management in Indonesia. Future research should explore the application of Sipongi Systems and collaborative governance in various contexts by conducting comparative studies across countries and ecosystems. Additionally, assessing the long-term impact and sustainability of the Sipongi System is critical to evaluating its effectiveness over time.
Himalayan ‘Ecotone’ temperate conifer forest is the cradle of life for human survival and wildlife existence. Human intervention and climate change are rapidly degrading and declining this transitional zone. This study aimed to quantify the floristic structure, important value index (IVI), topographic and edaphic variables between 2019 and 2020 utilizing circular quadrant method (10m × 10m). The upper-storey layer consisted of 17 tree species from 12 families and 9 orders. Middle-storey shrubs comprise 23 species representing 14 families and 12 orders. A total of 43 species of herbs, grasses, and ferns were identified from the ground-storey layer, representing 25 families and 21 orders. Upper-storey vegetation structure was dominated by Pinus roxburghii (22.45%), while middle-storey vegetation structure was dominated by Dodonaea viscosa (7.69%). However, the ground layer vegetation was diverse in species composition and distribution. By using Ward’s agglomerative clustering technique, the floral vegetation structure was divided into three floral communities. Ailanthus altissima, Pinus wallichiana, and P. roxburghii had the highest IVI values in Piro–Aial (Group 2), Piwa–Quin (Group 3) and Aial–Qugal (Group 2). The IVI values for Aesculus indica, Celtis australis, and Quercus incana in Aial-Qugal (Group 2) were not determined. Nevertheless, eleven of these species had 0 IVI values in Piro–Aial (Group 2) and Piwa–Quin (Group 3). Based on the CCA ordination biplot, significant differences were observed in floral characteristics and distribution depending on temperature, rainfall, soil pH, altitude, and topographic features. Based on Ward’s agglomerative clustering, it was found that Himalayan ‘Ecotone’ temperate conifer forests exhibit a rich and diverse floristic structure.
Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
Based on the analysis of the development and present situation of the standardization of forest cultivation in China and combined with the characteristics of forest cultivation, the main basis, principles and methods of establishing forest cultivation standard system were discussed and put forward. A standard system of forest cultivation was established, which included six sub-systems, namely, forest cultivation foundation, prenatal planning, artificial afforestation, tending management, harvest renewal etc. The ideas and management suggestions for standardization of forest cultivation in China in the future were put forward, such as to establish an authoritative and complete database and a supporting management system.
Tropical dry forests are complex and fragile ecosystems with high anthropogenic intervention and restricted reproductive cycles. They harbor unique richness, structural, physiological and phenological diversity. This research was carried out in the upper Magdalena valley, in four forest fragments with different successional stages. In each fragment, four permanent plots of 0.25 ha were established and the light habitat associated with species richness, relative abundance and rarity was evaluated, as well as the forest dynamics that included mortality, recruitment and diameter growth for a period of 5.25 years. In mature riparian forest, species richness was found to be higher than that reported in other studies for similar areas in the Cauca Valley and the Atlantic coast. Values of species richness, heterogeneity and rarity are higher than those found in drier areas of Tolima. Forest structure, diversity and dynamics were correlated with light habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. The utilization rate of photosynthetic effective radiation in the forest underlayer with high canopy density is low, which is related to the low species richness, while the underlayer under light is more abundant and heterogeneous.
Copyright © by EnPress Publisher. All rights reserved.