Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
This study aims to predict whether university students will make efficient use of Artificial Intelligence (AI) in the coming years, using a statistical analysis that predicts the outcome of a binary dependent variable (in this case, the efficient use of AI). Several independent variables, such as digital skills management or the use of Chat GPT, are considered.The results obtained allow us to know that inefficient use is linked to the lack of digital skills or age, among other factors, whereas Social Sciences students have the least probability of using Chat GPT efficiently, and the youngest students are the ones who make the worst use of AI.
This exploratory study aims to identify the main characteristics and relationships between artificial intelligence (AI) and broadband development in Asia and the Pacific. Broadband networks are the foundation and prerequisite for the development of AI. But what types of broadband networks would be conducive are not adequately discussed so far. Furthermore, in addition to broadband networks, other factors, such as income level, broadband quality, and investment, are expected to influence the uptake of AI in the region. The findings are synthesized into a set of policy recommendations at the end of the article, which highlights the need for regional cooperation through an initiative, such as the Asia-Pacific Information Superhighway (AP-IS).
Countering cyber extremism is a crucial challenge in the digital age. Social media algorithms, if designed and used properly, have the potential to be a powerful tool in this fight, development of technological solutions that can make social networks a safer and healthier space for all users. this study mainly aims to provide a comprehensive view of the role played by the algorithms of social networking sites in countering electronic extremism, and clarifying the expected ease of use by programmers in limiting the dissemination of extremist data. Additionally, to analyzing the intended benefit in controlling and organizing digital content for users from all societal groups. Through the systematic review tool, a variety of previous literature related to the applications of algorithms in the field of online radicalization reduction was evaluated. Algorithms use machine learning and analysis of text and images to detect content that may be harmful, hateful, or call for violence. Posts, comments, photos and videos are analyzed to detect any signs of extremism. Algorithms also contribute to enhancing content that promotes positive values, tolerance and understanding between individuals, which reduces the impact of extremist content. Algorithms are also constantly updated to be able to discover new methods used by extremists to spread their ideas and avoid detection. The results indicate that it is possible to make the most of these algorithms and use them to enhance electronic security and reduce digital threats.
New technologies always have an impact on traditional theories. Finance theories are no exception to that. In this paper, we have concentrated on the traditional investment theories in finance. The study examined five investment theories, their assumptions, and their limitation from different works of literature. The study considered Artificial Intelligence (AI) and Machine Learning (ML) as representative of financial technology (fintech) and tried to find out from the literature how these new technologies help to reduce the limitations of traditional theories. We have found that fintech does not have an equal impact on every conventional finance theory. Fintech outperforms all five traditional theories but on a different scale.
Copyright © by EnPress Publisher. All rights reserved.