This research was conducted using a survey research method to investigate the influence of Artificial Intelligence (AI) on Nigerian students’ academic performances in tertiary institutions. Nigerian tertiary institutions have an estimated population of about 2.5 million students across the universities, polytechnics, monotechnics, and colleges of education. A sample size of 509 was used. The researchers adopted an online questionnaire (Google Form) to administer questions to respondents across Nigeria to elicit responses from the respondents bordering on their awareness and the use of AI and its attendant impacts on their academic performance. Five research objectives were raised for the proper investigation of this study. From the findings of the study, the researchers found that the majority of Nigerian students use AI and that AI has positive impacts on the educational performance of Nigerian students. It was also found that Nigerian students have training on the use of AI for educational purposes and that they are more familiar with Snapchat AI and ChatGPT. Conclusively, AI is useful to students in the sense that it enhances their knowledge of their courses, improves their learning and speaking skills, and helps them to have a quick understanding of their course by way of simplifying technical aspects of their courses. The researchers therefore recommend as follows: Nigerian tertiary institutions should formally train students as well as teachers on the use of AI for academic purposes so that they can understand the ethical implications of the use of AI. Using AI for writing could be interpreted to mean examination malpractice, and this should not be condoned in the educational sector; however, at the moment, a small number of students used AI for examinations. Albeit, the appropriate use of AI should be fully integrated into Nigerian tertiary institutions’ curricula.
The policy to accelerate the design of the Detailed Spatial Plan regulation document (RDTR) is a strategic step to enhance ease of doing business and promote sustainable development in Indonesia. Targeting 2036 RDTR sites nationwide, the initiative relies on various policy interventions and technical approaches. However, as of 8 January 2024, only 399 RDTRs (19.59%) were enacted after four years of implementation. This underperformance suggests the need to examine factors influencing the process, including issues at each stage of the RDTR design business process. While often overlooked due to its perceived irrelevance to the core substance of planning, analyzing the process is crucial to addressing operational and procedural challenges. This research identifies critical issues arising from the preparation to the enactment stage of RDTR regulations and proposes necessary policy changes. Using an explanatory approach, the study employs methods such as Analytic Hierarchy Process (AHP), post-review analysis, stakeholder analysis, business process evaluation, and scenario planning. Results show several impediments, including challenges related to commitment, technical and substantive issues, managerial coordination, policy frameworks, ICT support, and data availability. These findings serve as inputs for the development of business process improvement scenarios and reengineering schemes based on Business Process Management principles.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
The research aimed to: 1) analyze components and indicators of digital transformation leadership among school administrators, 2) assess their leadership needs, and 3) develop mechanism models to promote this leadership. A mixed-method approach was applied, involving three sample groups: 8 experts, 406 administrators, and 7 experts. Data collection tools included semi-structured interviews, leadership scales, needs assessments, and focus group discussions, with analysis performed through construct validity testing, needs assessment, and content analysis. The findings revealed: 1) The components and indicators of digital transformation leadership showed structural validity, as confirmed by the model’s alignment with empirical data (Chi-Square = 82.3, df = 65, p = 0.072, CFI = 0.998, TLI = 0.997, RMR = 0.00965, RMSEA = 0.0256). 2) Among the leadership components, “innovative knowledge” ranked highest in need (PNImodified = 0.075), followed by “ideological influence” (0.066), “consideration of individuality” (0.055), “intellectual stimulation” (0.052), and “inspiration” (0.053). 3) Mechanism models for promoting leadership emphasized enhancing these five components to strengthen administrators’ skills in applying technology, managing teaching and development plans, and fostering innovation. Administrators were encouraged to tailor strategies to individual needs, inspire personnel, and create a commitment to organizational change and development. These mechanisms aim to equip administrators to effectively lead transformations, motivate staff, and drive educational institutions to adapt and thrive in evolving environments.
Copyright © by EnPress Publisher. All rights reserved.