This study investigates the roles of government and non-governmental organizations (NGOs) in constructing permanent housing for disaster-affected communities in Cianjur Regency following the November 2022 earthquake. Employing a qualitative methodology, the research utilizes in-depth interviews and field observations involving local governments, NGOs, and disaster survivors. The findings highlight the government’s central role in policy formulation, budget allocation, and coordination of housing development, while NGOs contribute through community empowerment, logistical support, and ensuring participatory planning. Challenges in collaboration, such as differing objectives and resource constraints, underscore the need for enhanced synergy. The study concludes that effective partnerships among the government, NGOs, and the community can expedite the development of sustainable, safe housing tailored to local needs. Emphasis on community empowerment and integrated resource management enhances resilience to future disasters. Success hinges on strong coordination, proactive challenge management, and inclusive stakeholder engagement throughout the recovery process.
Since 2022, global geopolitical conflicts have intensified, and there has been a notable increase in the international community’s demand for currency diversification. This has created a new opportunity for the internationalization of the Renminbi (RMB). This paper examines the factors influencing the internationalization of the RMB, with a particular focus on its role as a unit of account, medium of exchange and store of value. These functions are considered in conjunction with the digital technological innovation represented by e-CNY. The methodology employed is based on the vector autoregression (VAR) model, Granger causality test and variance decomposition analysis. The Granger causality test indicates that digital technology innovation is not the primary driver of RMB internationalization at this juncture. The impulse response analysis and variance decomposition analysis revealed that the impact and direction of influence exerted by the various factors on RMB internationalization exhibit considerable discrepancies.
Optimizing Storage Location Assignment (SLA) is essential for improving warehouse operations, reducing operational costs, travel distances and picking times. The effectiveness of the optimization process should be evaluated. This study introduces a novel, generalized objective function tailored to optimize SLA through integration with a Genetic Algorithm. The method incorporates key parameters such as item order frequency, storage grouping, and proximity of items frequently ordered together. Using simulation tools, this research models a picker-to-part system in a warehouse environment characterized by complex storage constraints, varying item demands and family-grouping criteria. The study explores four scenarios with distinct parameter weightings to analyze their impact on SLA. Contrary to other research that focuses on frequency-based assignment, this article presents a novel framework for designing SLA using key parameters. The study proves that it is advantageous to deviate from a frequency-based assignment, as considering other key parameters to determine the layout can lead to more favorable operations. The findings reveal that adjusting the parameter weightings enables effective SLA customization based on warehouse operational characteristics. Scenario-based analyses demonstrated significant reductions in travel distances during order picking tasks, particularly in scenarios prioritizing ordered-together proximity and group storage. Visual layouts and picking route evaluations highlighted the benefits of balancing frequency-based arrangements with grouping strategies. The study validates the utility of a tailored generalized objective function for SLA optimization. Scenario-based evaluations underscore the importance of fine-tuning SLA strategies to align with specific operational demands, paving the way for more efficient order picking and overall warehouse management.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
In this review are developed insights from the current research work to develop the concept of functional materials. This is understood as real modified substrates for varied applications. So, functional and modified substrates focused on nanoarchitectures, microcapsules, and devices for new nanotechnologies highlighting life sciences applications were revised. In this context, different types of concepts to proofs of concepts of new materials are shown to develop desired functions. Thus, it was shown that varied chemicals, emitters, pharmacophores, and controlled nano-chemistry were used for the design of nanoplatforms to further increase the sizes of materials. In this regard, the prototyping of materials was discussed, affording how to afford the challenge in the design and fabrication of new materials. Thus, the concept of optical active materials and the generation of a targeted signal through the substrate were developed. Moreover, advanced concepts were introduced, such as the multimodal energy approach by tuning optical coupling from molecules to the nanoscale within complex matter composites. These approaches were based on the confinement of specific optical matter, considering molecular spectroscopics and nano-optics, from where the new concept nominated as metamaterials was generated. In this manner, fundamental and applied research by the design of hierarchical bottom-up materials, controlling molecules towards nanoplatforms and modified substrates, was proposed. Therefore, varied accurate length scales and dimensions were controlled. Finally, it showed proofs of concepts and applications of implantable, portable, and wearable devices from cutting-edge knowledge to the next generation of devices and miniaturized instrumentation.
Copyright © by EnPress Publisher. All rights reserved.