A review of the CARG Project of the Campania Region (marine counterpart) up to water depths of 200 m is herein proposed referring to the Gulf of Naples (southern Tyrrhenian Sea) aimed at focusing on the main scientific results obtained in the frame of this important project of marine geological cartography. The Gulf of Naples includes several geological sheets, namely n. 464 “Island of Ischia” both at the 1:25,000 and 1:10,000 scale, n. 465 “Island of Procida” at the 1:50,000 scale, n. 466–485 “Sorrento–Termini” at the 1:50,000 scale, n. 446–447 Naples at the 1:50,000 scale, and n. 484 “Island of Capri” at the 1:25,000 scale. The detailed revision of both the marine geological and geophysical data and of the literature data has allowed us to outline new perspectives in marine geology and cartography of Campania Region, including monitoring of coastal zone and individuation of coastal and volcano-tectonic and marine hazards.
The effects of climate change are already being felt, including the failure to harvest several agricultural products. On the other hand, peatland requires good management because it is a high carbon store and is vulnerable as a contributor to high emissions if it catches fire. This study aims to determine the potential for livelihood options through land management with an agroforestry pattern in peatlands. The methods used are field observation and in-depth interviews. The research location is in Kuburaya Regency, West Kalimantan, Indonesia. Several land use scenarios are presented using additional secondary data. The results show that agroforestry provides more livelihood options than monoculture farming or wood. The economic contribution is very important so that people reduce slash-and-burn activities that can increase carbon emissions and threaten the sustainability of peatland.
In this paper, we modeled and simulated two tandem solar cell structures (a) and (b), in a two-terminal configuration based on inorganic and lead-free absorber materials. The structures are composed of sub-cells already studied in our previous work, where we simulated the impact of defect density and recombination rate at the interfaces, as well as that of the thicknesses of the charge transport and absorber layers, on the photovoltaic performance. We also studied the performance resulting from the use of different materials for the electron and hole transport layers. The two structures studied include a bottom cell based on the perovskite material CsSnI3 with a band gap energy of 1.3 eV and a thickness of 1.5 µm. The first structure has an upper sub-cell based on the CsSnGeI3 material with an energy of 1.5 eV, while the second has an upper sub-cell made of Cs2TiBr6 with a band gap energy of 1.6 eV. The theoretical model used to evaluate the photocurrent density, current-voltage characteristic, and photovoltaic parameters of the constituent sub-cells and the tandem device was described. Current matching analysis was performed to find the ideal combination of absorber thicknesses that allows the same current density to be shared. An efficiency of 29.8% was obtained with a short circuit current density Jsc = 19.92 mA/cm2, an open circuit potential Voc = 1.46 V and a form factor FF = 91.5% with the first structure (a), for a top absorber thickness of CsSnGeI3 of 190 nm, while an efficiency of 26.8% with Jsc = 16.74, Voc = 1.50 V and FF = 91.4% was obtained with the second structure (b), for a top absorber thickness of Cs2TiBr6 of 300 nm. The objective of this study is to develop efficient, low-cost, stable and non-toxic tandem devices based on lead-free and inorganic perovskite.
Abrupt changes in environmental temperature, wind and humidity can lead to great threats to human life safety. The Gansu marathon disaster of China highlights the importance of early warning of hypothermia from extremely low apparent temperature (AT). Here a deep convolutional neural network model together with a statistical downscaling framework is developed to forecast environmental factors for 1 to 12 h in advance to evaluate the effectiveness of deep learning for AT prediction at 1 km resolution. The experiments use data for temperature, wind speed and relative humidity in ERA-5 and the results show that the developed deep learning model can predict the upcoming extreme low temperature AT event in the Gansu marathon region several hours in advance with better accuracy than climatological and persistence forecasting methods. The hypothermia time estimated by the deep learning method with a heat loss model agrees well with the observed estimation at 3-hour lead. Therefore, the developed deep learning forecasting method is effective for short-term AT prediction and hypothermia warnings at local areas.
This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
Copyright © by EnPress Publisher. All rights reserved.