The present study aims at analyzing the various factors influencing consumer attitudes towards the adoption of electric vehicles (EVs) in Saudi Arabia. The study evaluates consumer attitudes, their impact on shaping behaviours, and whether consumer intention mediates the relationship between consumer attitude and purchase behaviour towards EVs. This research employs a mixed-method approach, including literature review, surveys, and data analysis. It investigates EV adoption dimensions encompassing individual, social, economic, and environmental factors. Data collected from 397 current and potential EV owners in Saudi Arabia provide insights into their attitudes and behaviours. Survey findings indicate that in Saudi Arabia, safety rating, social influence, economic value, operating cost, and product variety significantly shape consumer attitudes and influence EV adoption. However, factors like range anxiety, charging infrastructure, environmental concern, and performance expectancy are less significant in affecting consumer attitudes toward EVs and their adoption. Investigating multiple dimensions and employing a mixed-method approach, the study enhances the existing knowledge of consumer attitudes toward EVs in the unique context of Saudi Arabia’s sustainable mobility transition. Policymakers and industry stakeholders can utilize these findings to expedite the shift to sustainable transportation in the Kingdom. This research also guides future investigations in this burgeoning field.
Fungi can be used to remove or degrade polluting compounds through a mycoremediation process. Sometimes even more efficiently than prokaryotes, they can therefore be used to combat pollution from non-biodegradable polymers. Cellulose acetate is a commonly used material in the manufacture of cigarette butts, so when discarded, it generates pollution. The fungus Pleurotus ostreatus has the ability to degrade cellulose acetate through the enzymes it secretes. The enzyme hydrolyzes the acetyl group of cellulose acetate, while cellulolytic enzymes degrade the cellulose backbone into sugars, polysaccharides, or cellobiose. In addition to cellulose acetate, this fungus is capable of degrading other conventionally non-biodegradable polymers, so it has the potential to be used to reduce pollution. Large-scale cultivation of the fungus has proven to be more economically viable than conventional methods for treating non-biodegradable polymers, which is an additional advantage.
To increase inter-region connectivity, the Indonesian government initiated infrastructure projects such as toll roads, airport, highways, as well as agriculture ones throughout the countries. One of the big projects in road infrastructure was the Cikampek–Palimanan (Cipali) toll road in West Java with a budget of more than USD1 billion which started to operate in July 2015. This paper is aimed to evaluate the impact of the toll road on accessibilities, trades, and investments in the region it traverses. To carry out the analysis, we used qualitative approach, difference-in-difference approach, and ANOVA, utilizing three kinds of data. The first data is collected from a survey of 331 small-medium enterprises (SMEs) in the logistics and the hotel and restaurant industries. The second one is bank loan data sourced from Bank Indonesia, while the third one is investment data from Investment Coordinating Board of Indonesia (BKPM).
After two years of its operation, Cipali toll road has increased accessibility, mobility, trade, and investment in the region it traverses. The travel time was reduced by 39%, while the cargo volume of the local businesses increased by 30% to 40%. These led to an improvement of wholesale trade volume in almost all regencies. However, SMEs in the hotel and restaurant industry along the traditional northern coastal highway in Subang, Indramayu, and Brebes experienced a decline due to the traffic shifting. Meanwhile, investments from national companies especially those of labor-intensive manufacturing industries flowed significantly especially to Subang and Majalengka, which reflected a “sorting effect”. However, investments from local and foreign businesses did not increase significantly yet after 2.5 years of toll operation.
To reap the benefit from the presence of Cipali toll road, the local governments should improve the ease of doing business to attract investments that boost employment in return. In addition, given a better accessibility from Greater Jakarta and a large number of potential visitors passing through the toll road, local businesses in the trade sector would benefit if they could promote the local attractions such as in tourism activities supported by the local government. The latter strategy should also be implemented by the local governments and local businesses in the northern coastal traditional route to minimize the negative impact of the toll road due to the traffic shifting. This strategy should be strengthened through increasing connectivity from the toll exits to local business areas and through increasing the ease of doing business.
This review discusses the significant progress made in the development of CNT/GO-based biosensors for disease biomarker detection. It highlights the specific applications of CNT/GO-based biosensors in the detection of various disease biomarkers, including cancer, cardiovascular diseases, infectious diseases, and neurodegenerative disorders. The superior performance of these biosensors, such as their high sensitivity, low detection limits, and real-time monitoring capabilities, makes them highly promising for early disease diagnosis. Moreover, the challenges and future directions in the field of CNT/GO-based biosensors are discussed, focusing on the need for standardization, scalability, and commercialization of these biosensing platforms. In conclusion, CNT/GO-based biosensors have demonstrated immense potential in the field of disease biomarker detection, offering a promising approach towards early diagnosis. Continued research and development in this area hold great promise for advancing personalized medicine and improving patient outcomes.
Oil spill clean-up is a long-standing challenge for researchers to prevent serious environmental pollution. A new kind of oil-absorbent based on silicon-containing polymers (e.g., poly(dimethylsiloxane) (PDMS)) with high absorption capacity and excellent reusability was prepared and used for oil-water separation. The PDMS-based oil absorbents have highly interconnected pores with swellable skeletons, combining the advantages of porous materials and gels. On the other hand, polymer/silica composites have been extensively studied as high-performance functional coatings since, as an organic/inorganic composite material, they are expected to combine polymer flexibility and ease of processing with mechanical properties. Polymer composites with increased impact resistance and tensile strength without decreasing the flexibility of the polymer matrix can be achieved by incorporating silica nanoparticles, nanosand, or sand particles into the polymeric matrices. Therefore, polymer/silica composites have attracted great interest in many industries. Some potential applications, including high-performance coatings, electronics and optical applications, membranes, sensors, materials for metal uptake, etc., were comprehensively reviewed. In the first part of the review, we will cover the recent progress of oil absorbents based on silicon-containing polymers (PDMS). In the later details of the review, we will discuss the recent developments of functional materials based on polymer/silica composites, sand, and nanosand systems.
Copyright © by EnPress Publisher. All rights reserved.