Globalization and economic integration have an impact on increasing trade volume and economic growth in various countries, especially those that are open in their economies. This situation also provides ease of capital mobility between countries, which makes investment not only rely on domestic investment but also on foreign direct investment. Exchange rates and inflation also affect export growth, imports, and economic growth. The purpose of this study is to determine the effect of exchange rate, inflation, foreign direct investment, government expenditure, and economic openness on export and import growth. This study used time series data during the period 1980–2021, sourced from UNCTAD, ASYB, and Indonesian Central Bank (BI). The analysis model used is multiple linear regression with the help of EViews software, which first tests classical assumptions so that the regression results are Best Linier Unbiased Estimator (BLUE). The results show that foreign direct investment and government spending can significantly increase the rate of exports and imports. Meanwhile, the depreciating rupiah against the US dollar cannot encourage an increase in both exports and imports. Furthermore, foreign direct investment, government spending, and economic openness can significantly increase economic growth. The other variables, net exports and inflation, have no effect on Indonesia’s economic growth rate.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
In view of the large energy consumption of the regeneration process in the chemical absorption decarburization process, on the basis of the enrichment classification flow process, the nanoscale ceramic film is used as a new heat exchanger between the enriched liquid and the regeneration gas. The porous ceramic film is capable of coupling thermal-mass transfer to effectively recover part of the water vapor and the heat carried in the regeneration gas, so as to reduce the regenerative energy consumption of the system. The effects of parameters such as regeneration temperature, flow rate, molar fraction of water vapor, and MEA enrichment temperature, flow rate, and MEA concentration of shunt on the hydrothermal recovery effect of ceramic membranes of different pore sizes and lengths were studied by using the heat recovery flux and water recovery rate as the indicators. The results show that the hydrothermal recovery performance of the ceramic membrane increases with the increase of MEA enrichment flow, but decreases significantly with the increase of the enrichment temperature. At the same time, with the increase of regenerative gas velocity and the molar fraction of water vapor in the regenerative gas, the heat recovery flux will increase. The heat recovery performance of the 10 nm ceramic membrane is better than that of the 20 nm ceramic membrane.
The structure, thermodynamic stability, ionization potential (IP) and electron affinity (EA) energy level difference (Eg) and tension of lowest unoccupied orbit (LUMO) and highest occupied orbit (HOMO) of armchair single wall carbon nanotubes (C-NTs), BN hybrid carbon nanotubes (BC2N-NTs) and all BN nanotubes (BN-NTs) were systematically studied with AM1 method in this paper. Calculation results show that when n value is constant, (n, n) C-NTs (n = 3,4,5,6) has the largest diameter and BN-NTs has the smallest diameter; (n, n) the values of Eg (HOMO-LUMO) and n of C-NTs and BC2N-NTs are related; POAV analysis shows that different hybrid atoms have different contributions to the hybrid mode of nanotube atoms and the tension of nanotubes.
The landlocked and fragile countries’ ability to create a sustainable path to economic growth and poverty reduction is inextricably linked to their export diversification potential, itself related to their connectivity within themselves, in the region, and other external markets. Mali, Chad, and Niger are first challenged by their geography—their landlocked nature with their vast and thinly populated space serves to isolate the most vulnerable communities from external and internal markets. Adding to these geographic disadvantages non-landlocked is incentive environment—defined by high and variable customs common external tariff regimes resulting from multiple overlapping regional trade arrangements—places a wedge between domestic and international prices, provides a disincentive to exports in favor of non-tradable and domestic-oriented sectors. By bringing greater coherence and convergence between the many common external tariff regimes in operation and the rationalization of their structures, and improving connectivity within and between markets, Mali, Chad, Niger, and Guinea can better promote the reallocation of resources toward tradable goods and services, putting the countries on a path toward greater economic inclusion and sustainable growth.
Copyright © by EnPress Publisher. All rights reserved.