Green manufacturing is increasingly becoming popular, especially in lubricant manufacturing, as more environmentally friendly substitutes for mineral base oil and synthetic additives are being found among plant extracts and progress in methodologies for extraction and synthesis is being made. It has been observed that some of the important performance characteristics need enhancement, of which nanoparticle addition has been noted as one of the effective solutions. However, the concentration of the addictive that would optimised the performance characteristics of interest remains a contending area of research. The research was out to find how the concentration of green synthesized aluminum oxide nanoparticles in nano lubricants formed from selected vegetable oils influences friction and wear. A bottom-up green synthesis approach was adopted to synthesize aluminum oxide (Al2O3) from aluminum nitrate (Al(NO3)3) precursor in the presence of a plant-based reducing agent—Ipomoea pes-caprae. The synthesized Al2O3 nanoparticles were characterized using TEM and XRD and found to be mostly of spherical shape of sizes 44.73 nm. Al2O3 nanoparticles at different concentrations—0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, and 1.0 wt%—were used as additives to castor, jatropha, and palm kernel oils to formulate nano lubricants and tested alternately on a ball-on-aluminum (SAE 332) and low-carbon steel Disc Tribometer. All the vegetable-based oil nano lubricants showed a significant decrease in the coefficient of friction (CoF) and wear rate with Ball-on-(aluminum SAE 332) disc tribometer up to 0.5wt% of the nanoparticle: the best performances (eCOF = 92.29; eWR = 79.53) came from Al2O3-castor oil nano lubricant and Al2O3-palm kernel oil; afterwards, they started to increase. However, the performance indices displayed irregular behaviour for both COF and Wear Rate (WR) when tested on a ball-on-low-carbon steel Disc Tribometer.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
With the advancement of modernization, commoditization and grassroots governance have become important terms. Community governance not only promotes modern democracy but plays a key role in improving community governance capabilities and modernizing the governance system, which is receiving much attention. Despite the expanding number of articles on community governance, few evaluations investigate its evolution, tactics, and future goals. As a result, the particular goal of this study is to provide the findings of a thematic analysis of community governance research. Investigating the skills and procedures needed for practice-based community government. Data for this study were gathered through a thematic assessment of 66 papers published between 2018 and 2023. The pattern required by the researchers was provided by the ATLS.ti23 code used to record the review outcomes. This study proposes six central themes: 1) rural advancement, 2) community (social) capital, 3) public health and order governance, 4) governance technology, 5) sustainable development, and 6) governance model. The research results show that the research trend of community governance should focus on rural advancement, taking rural community governance as the starting point, the dilemma and adjustment of the governance model, community public health and order governance, and digital governance. It will yield new insights into new community governance standards and research trends.
Conflicts are inevitable in any human community, despite the fact that they are never desirable. One of the characteristics of the contemporary world is conflict. Different parties participate in disputes (individuals, organizations, and states). When disputes arise, interventionist methods are put into action. Conflicts arise in a variety of ways, such as disagreement, rage, quarrelling, hatred, destruction, killing, or war, because human requirements are diverse. Conflict takes many different shapes, and so do interventions. Individuals, groups (both local and foreign), and governments can all intervene in a conflict. The media and its functions are up for debate among those who mediate disputes. Can the media be seen as intervening in a dispute, or are they merely performing their mandated duties? The diversity of opinions is what drives conversations in peace journalism. In addition, peace journalism promotes media engagement and intervention in conflict situations in order to lessen and end conflict. Media intervention, according to some critics, is not objective journalism because those in charge of educational information management and journalists are not expected to make decisions about the news; rather, they should just tell it as they see it. Therefore, the purpose of this article is to examine the idea of conflict, the stages of conflict development, interventions in conflicts, and the contentious position of the media in conflicts from an educational information management perspective. Hence, this paper will contribute to the role of educational information management via social media and other new media platforms, which have occasionally been used to hold governments responsible, unite people in protest of violence, plan relief operations, empower people, dissipate tensions via knowledge sharing, and create understanding across boundaries.
Copyright © by EnPress Publisher. All rights reserved.