This paper provides a comparative perspective on infrastructure provision in developing Asia's three largest countries: China, India, and Indonesia. It discusses their achievements and shortfalls in providing network infrastructure (energy, transport, water, and telecommunications) over the past two decades. It documents how three quite distinct development paths—and very different levels of national saving and investment—were manifested in different trajectories of infrastructure provision. The paper then describes the institutional, economic, and policy factors that enabled or hindered progress in providing infrastructure. Here, contrasting levels of centralization of planning played a key role, as did countries’ differing abilities to mobilize infrastructure-related revenue streams such as user charges and land value capture. The paper then assesses future challenges for the three countries in providing infrastructure in a more integrated and sustainable way, and links these challenges with the global development agenda to which the three countries have committed. The concluding recommendations hope to provide a platform for further policy and research dialogue.
Today, diffusion-weighted MRI is an important, complementary sequence in an MRI of the abdomen, especially in oncological questions, but also in inflammatory diseases. The following paper deals with the technical basics and shows typical indications and findings as well as the value of the method in the diagnosis of parenchymatous upper abdominal organs and the gastrointestinal tract.
Objective: To evaluate the clinical and radiographic results and complications of arthroscopic subcapital realignment osteotomy for the treatment of chronic and stable proximal femoral epiphysiolysis (PFE) in an initial series of patients. According to the literature review, the study presents the first description of an arthroscopic technique of this type of osteotomy. Methods: Between June 2012 and December 2014, seven patients underwent arthroscopic subcapital realignment osteotomy for the treatment of chronic, stable PFE. The mean age of the patients was 11 years and four months. Minimum follow-up ranged from 6 to 36 months (mean, 16.5 months). Patients were clinically evaluated according to the Harris Hip Score modified by Byrd and radiographically according to Southwick’s quantitative classification and the epiphyseal-diaphyseal angle. Postoperative complications were analyzed. Results: With regard to the evaluation of the Harris Hip Score Modified by Byrd clinical score, a preoperative mean of 35.8 points and a postoperative mean of 97.5 points were observed (p < 0.05). Radiographically, five patients were classified as Southwick grade II and two as grade III. A mean correction of the epiphyseal-diaphyseal angle of 40° was observed. There were no immediate postoperative complications. One patient developed avascular necrosis of the femoral head, without collapse or chondrolysis at the last follow-up (22 months). Conclusion: The arthroscopic technique presented by the authors for the treatment of chronic, stable PFE resulted in clinical and radiographic improvement of the patients in this initial series.
A systemic and synthetic review of the anatomy of the temporomandibular joint in magnetic resonance imaging was developed for its evaluation. The temporomandibular joint is an anatomical structure composed of bones, muscles, ligaments and an articular disc that allows important physiological movements, such as mandibular opening, closing, protrusion, retrusion and lateralization. Magnetic resonance imaging is an imaging technique that does not use ionizing radiation and is more specific for the evaluation and interpretation of soft tissues, due to its high resolution, so it has an important role in the diagnosis of various maxillofacial pathologies, which is why the dentist should have knowledge of the structures and functions of the temporomandibular joint through magnetic resonance imaging. The review demonstrates the importance of magnetic resonance imaging in the study of the anatomy of the temporomandibular joint, in addition to mentioning the advantages provided by this imaging technique such as its good detail of the soft tissues in its different sequences and the non-use of ionizing radiation to obtain its images.
With the increasing demand for sustainable energy, advanced characterization methods are becoming more and more important in the field of energy materials research. With the help of X-ray imaging technology, we can obtain the morphology, structure and stress change information of energy materials in real time from two-dimensional and three-dimensional perspectives. In addition, with the help of high penetration X-ray and high brightness synchrotron radiation source, in-situ experiments are designed to obtain the qualitative and quantitative change information of samples during the charge and discharge process. In this paper, X-ray imaging technology based on synchrotron and its related applications are reviewed. The applications of several main X-ray imaging technologies in the field of energy materials, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, X-ray fluorescence microscopy and coherent diffraction imaging, are discussed. The application prospects and development directions of X-ray imaging in the future are prospected.
Copyright © by EnPress Publisher. All rights reserved.