Open-source software (OSS) has emerged as a transformative tool whose implementation has the potential to modernise many libraries around the world in the digital age. OSS is a type of software which permits its users to inspect, share, modify, and enhance through its freely accessed source code. The accessibility and openness of the source code permits users to manipulate, change, and improve the way in which a piece of software, program, or application works. OSS solutions therefore provide cost-effective alternatives that enable libraries to enhance their technological infrastructure without being constrained by proprietary systems. Hence, many countries have initiated and formulated policies and legislative frameworks to support the implementation and use of OSS library solutions such as DSpace, Alfresco, and Greenstone. The purpose of the study reported on was to investigate the leveraging of OSS to modernise public libraries in South Africa. Content analysis was adopted as the research methodology for this qualitative study, which was based on a literature review integrating insights from the researchers’ experiences with the use of OSS in libraries The findings of the study reveal that the use of OSS has the potential to modernise public libraries, especially those located outside cities or urban areas. These libraries are often less well equipped with the necessary technology infrastructure to meet the demands of the digital age, such as online books and open access materials. The study culminated in an OSS framework that may be implemented to modernise public libraries. This framework may help public libraries to integrate OSS solutions and further allow users access to digital services.
Instant and accurate evaluation of drug resistance in tumors before and during chemotherapy is important for patients with advanced colon cancer and is beneficial for prolonging their progression-free survival time. Here, the possible biomarkers that reflect the drug resistance of colon cancer were investigated using proton magnetic resonance spectroscopy (1H-MRS) in vivo. SW480[5-fluorouracil(5-FU)-responsive] and SW480/5-FU (5-FU-resistant) xenograft models were generated and subjected to in vivo 1H-MRS examinations when the maximum tumor diameter reached 1–1.5 cm. The areas under the peaks for metabolites, including choline (Cho), lactate (Lac), glutamine/glutamate (Glx), and myo-inositol (Ins)/creatine (Cr) in the tumors, were analyzed between two groups. The resistance-related protein expression, cell morphology, necrosis, apoptosis, and cell survival of these tumor specimens were assessed. The content for tCho, Lac, Glx, and Ins/Cr in the tumors of the SW480 group was significantly lower than that of the SW480/5-FU group (P < 0.05). While there was no significant difference in the degree of necrosis and apoptosis rate of tumor cells between the two groups (P > 0.05), the tumor cells of the SW480/5-FU showed a higher cell density and larger nuclei. The expression levels of resistance-related proteins (P-gp, MPR1, PKC) in the SW480 group were lower than those in the SW480/5-FU group (P < 0.01). The survival rate of 5-FU-resistant colon cancer cells was significantly higher than that of 5-FU-responsive ones at 5-FU concentrations greater than 2.5 μg/mL (P < 0.05). These results suggest that alterations in tCho, Lac, Glx1, Glx2, and Ins/Cr detected by 1H-MRS may be used for monitoring tumor resistance to 5-FU in vivo.
Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
A fresh interest has been accorded to metal iodides due to their fascinating physicochemical properties such as high ionic conductivity, variable optical properties, and high thermal stabilities in making micro and macro devices. Breakthroughs in cathodic preparation and metallization of metal iodides revealed new opportunities for using these compounds in various fields, especially in energy conversion and materials with luminescent and sensory properties. In energy storage metal iodides are being looked at due to their potential to enhance battery performance, in optoelectronics the property of the metal iodides is available to create efficient LEDs and solar cells. Further, their application in sensing devices, especially in environmental and medical monitoring has been quite mentioned due to their response towards environmental changes such as heat or light. Nevertheless, some challenges are still in question, including material stability, scale-up opportunities, and compatibility with other technologies. This work highlights the groundbreaking potential of metal iodide-based nanomaterials, emphasizing their transformative role in innovation and their promise for future advancements.
Disinformation can be defined as false information deliberately initiated to cause harm to a person, social group, organization, or country. Gendered disinformation then attacks or undermines people based on gender or weaponizes gendered narratives for political, social, or economic objectives. Gendered disinformation comes in different forms, such as harmful social media posts and graphics, sexual fabrications, and other forms of conspiracy theories. It is used in various situations and at different places. This research discussed the instances of gendered disinformation and harmful online narratives that are recognizable and visible. It sheds light on the potential direct and indirect impact on youth experiences. In this study, the young participants (aged 18–30) focused on the instances of the existing online narratives of gendered discrimination from Belgium, Greece, Latvia, Spain, and Türkiye. The research provided an initial analysis of what “gendered information and harmful online narratives” look like and some recommendations from youth perspectives on countering the issues. The study concluded that there is a need for more research, further harmonization of legal frameworks, and strengthened capacity to detect gendered disinformation, propaganda, and hate speech.
Copyright © by EnPress Publisher. All rights reserved.