This article examines how financial technology determines bank performance in different EU countries. The answer to that question would allow banks to choose their development policy. The paper focuses on the main and most popular bank services that are linked to financial technology. A SWOT analysis of FinTech is also presented to show the benefits and drawbacks of FinTech. FinTech-based services are very diverse and are provided by financial firms and banks alike. This paper looks at the financial technology provided by banks: internet usage (internet banking), number of ATMs, credit transfers in a country, percentage of the population in a country holding a debit or credit card and whether that population has received or made a digital payment. Using the multi-criteria assessment methods of CRITIC and EDAS, the authors analysed and compared the countries of the European Union and the financial technology used in them. As a result of the application of these methods, the EU countries under consideration were ranked in terms of the use of financial technology. Subsequently, three banks from different countries with different levels of the use of financial technology were selected for the study. For these banks, financial ratios of profitability were calculated to characterise their performance. Correlation and pairwise regression analyses between the banks’ profitability ratios and financial technology were used to assess the relationship and influence between these ratios. The main conclusion of the study focuses on the extent to which financial technology influences the performance of banks in the selected countries. It is likely that further research will try to take into account the size of the country’s population when analysing all financial technologies. Researchers also needed to find out what influence financial technologies have on the such financial indicators as operational efficiency (costs), financial stability, and capital adequacy.
Creating a crop type map is a dominant yet complicated model to produce. This study aims to determine the best model to identify the wheat crop in the Haridwar district, Uttarakhand, India, by presenting a novel approach using machine learning techniques for time series data derived from the Sentinel-2 satellite spanned from mid-November to April. The proposed methodology combines the Normalized Difference Vegetation Index (NDVI), satellite bands like red, green, blue, and NIR, feature extraction, and classification algorithms to capture crop growth's temporal dynamics effectively. Three models, Random Forest, Convolutional Neural Networks, and Support Vector Machine, were compared to obtain the start of season (SOS). It is validated and evaluated using the performance metrics. Further, Random Forest stood out as the best model statistically and spatially for phenology parameter extraction with the least RMSE value at 19 days. CNN and Random Forest models were used to classify wheat crops by combining SOS, blue, green, red, NIR bands, and NDVI. Random Forest produces a more accurate wheat map with an accuracy of 69% and 0.5 MeanIoU. It was observed that CNN is not able to distinguish between wheat and other crops. The result revealed that incorporating the Sentinel-2 satellite data bearing a high spatial and temporal resolution with supervised machine-learning models and crop phenology metrics can empower the crop type classification process.
The role of trace gases in the storage of heat in the atmosphere of the Earth and in the exchange of energy between the atmosphere and outer space is discussed. The molar heat capacities of the trace gases water vapor, carbon dioxide and methane are only slightly higher than those of nitrogen and oxygen. The contribution of trace gases carbon dioxide and methane to heat storage is negligible. Water vapor, with its higher concentration and conversion energies, contributes significantly to the heat storage in the atmosphere. Most of the heat in the Earth’s atmosphere is stored in nitrogen and oxygen, the main components of the atmosphere. The trace gases act as converters of infrared radiation into heat and vice versa. They are receivers and transmitters in the exchange of energy with outer space. The radiation towards space is favored compared to the reflection towards the surface of the Earth with increasing altitude by decreasing the density of the atmosphere and condensation of water vapor. Predictions of the development of the climate over a century by extrapolation are critically assessed.
Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
The history of organic polymers is a remarkable journey from the discovery of natural materials like rubber and silk to the development of sophisticated synthetic polymers that have transformed industries and modern life. This comprehensive review article presents a detailed account of the evolution of organic polymers. It begins with the early uses of natural polymers and explores key breakthroughs, including the invention of Bakelite, nylon, and neoprene. The theoretical foundations of polymer science, laid by Hermann Staudinger, are discussed, and the post-war surge in polymer development is examined, including the introduction of polyethylene, polypropylene, and PVC. Notable advances in polymer chemistry, such as isotactic polypropylene and silicone polymers, are highlighted. The article also delves into the development of high-performance polymers like Kevlar and carbon-based materials, offering insights into their applications. Moreover, it discusses the current trends in polymer science, emphasizing sustainability and biodegradability. As the world continues to rely on polymers for numerous applications, this review provides a historical perspective and a glimpse into the future of organic polymers, where innovations are expected to shape various aspects of technology, healthcare, and environmental protection.
Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
Copyright © by EnPress Publisher. All rights reserved.