COVID-19 has amplified existing imbalances, institutional and financing constraints associated with a development strategy that did not take sufficient account of challenges with emissions, environmental damage and health risks associated with climate change in a number of countries, including China. The recovery from the pandemic can be combined with appropriately designed investments that take into account human, social, natural and physical capital, as well as distributional objectives, that can also address commitments under the Paris agreement. An important criterion for sustainable development is that the tax regimes at the national and sub-national levels should reflect the same criteria as the investment strategy. Own-source revenues, are essential to be able to access private financing, including local government bonds and PPPs in a sustainable manner. Governance criteria are also important including information on the buildup of liabilities at all levels of government, to ensure transparent governance.
Despite differences in political systems, the Chinese experiences are relevant in a wide range of emerging market countries as the measures utilize institutions and policies reflecting international best practices, including modern tax administrations for the VAT, and income taxes, and benefit-linked property taxes, as well as utilization of balance sheets information consistent with the IMF’s Government Financial Statistics Manual, 2014. The options have significant implications for policy advice and development cooperation for meeting global climate change goals while ensuring sustainable employment generation with transparency and accountability.
Infrastructure investment has long been held as an accelerator or a driver of the economy. Internationally, the UK ranks poorly with the performance of infrastructure and ranks in the lower percentile for both infrastructure investment and GDP growth rate amongst comparative nations. Faced with the uncertainty of Brexit and the likely negative economic impact this will bring, infrastructure investment may be used to strengthen the UK economy. This study aims to examine how infrastructure funding impacts economic growth and how best the UK can maximize this potential by building on existing work.
The research method is based on interviews carried out with respondents involved in infrastructure operating across various sectors. The findings show that investment in infrastructure is vital in the UK as it stimulates economic growth through employment creation due to factor productivity. However, it is critical for investment to be directed to regional opportunity areas with the potential to unlock economic growth and maximize returns whilst stimulating further growth to benefit other regions. There is also a need for policy consistency and to review UK infrastructure policy to streamline the process and to reduce cost and time overrun, with Brexit likely to impact negatively on infrastructure investment.
While there has been much discussion about the large infrastructure needs in Asia and the Pacific, less attention has been paid to public expenditure efficiency in infrastructure services delivery. New constructions are not the only solution, especially when governments have limited capital to invest. Globally, new infrastructure projects face delays and cost overruns, leading to an inefficient use of public resources. The root causes include the lack of transparency in project selection, the lack of project preparation, the silo approach by public entities in assessing feasibility studies, and the lack of public sector capacity to fully develop a bankable pipeline of projects. To tackle these issues, governments need a smarter investment approach and to do so, enhancing public service efficiency is very crucial. The paper suggests a “whole life cycle” (WLC) approach as the main strategic solution for the discussed issues and challenges. We expand the definition of WLC to include the entire life cycle of the infrastructure asset from need identification to its disposal. The stages comprise planning, preparation, procurement, design, construction, operation and maintenance, and disposal. This is because we believe any efficient or inefficient decision throughout such a wide life cycle influences the quality of public services. Hence, in this holistic approach, infrastructure life cycle consists of four phases: planning, preparation, procurement, and implementation. Governments could enhance public efficiency and thus improve access to finance throughout the WLC by several solutions. These are (i) preparing infrastructure master plan and pipelines and long-term budgeting during the planning phase; (ii) establishing framework and guidelines and improving governance during preparation phase; (iii) promoting standardization, transparency, open government, and contractual consistency during the procurement phase; and finally (iv) continued role of government and total asset management during the implementation phase. In addition to these phase-specific means, key WLC solutions include proper use of technology, capacity building, and private participation in general and public-private partnership (PPP) in particular.
In this policy insight, the author lays out the context of the BRI and its role in global development. He also explains why the US should consider working with China on the BRI. The author opines on China’s possible approach and strategy to get global private investors to come on board for the massive BRI projects. He suggests that the global players can establish a third-party market cooperation and coordination mechanism to turn the BRI into a platform for win-win global collaboration.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
Copyright © by EnPress Publisher. All rights reserved.