Three-dimensionally cross-linked polymer nanocomposite networks coated nano sand light-weight proppants (LWPs) were successfully prepared via ball-milling the macro sand and subsequently modifying the resultant nano sand with sequential polymer nanocomposite coating. The modified nano sand proppants had good sphericity and roundness. Thermal analyses showed that the samples can withstand up to 411 ℃. Moreover, the proppant samples’ specific gravity (S.G.) was 1.02–1.10 g/cm3 with excellent water dispersibility. Therefore, cross-linked polymer nanocomposite networks coated nano sand particles can act as potential candidates as water-carrying proppants for hydraulic fracturing operations.
Recent research efforts have increasingly concentrated on creating innovative biomaterials to improve bone tissue engineering techniques. Among these, hybrid nanomaterials stand out as a promising category of biomaterials. In this study, we present a straightforward, cost-efficient, and optimized hydrothermal synthesis method to produce high-purity Ta-doped potassium titanate nanofibers. Morphological characterizations revealed that Ta-doping maintained the native crystal structure of potassium titanate, highlighting its exciting potential in bone tissue engineering.
Bioactive materials are those that cause a number of interactions at the biomaterial-living tissue inter-face that result in the evolution of a mechanically strong association between them. For this reason, an implantable material’s bioactive behavior is highly advantageous. Silicate glasses are encouraged to be used as bioactive glasses due to their great biocompatibility and beneficial biological effects. The sol-gel method is the most effective for preparing silicate glasses because it increases the material’s bioactivity by creating pores. Glass densities are altered by the internal network connectivity between network formers and network modifiers. The increase in the composition of alkali or alkaline oxides reduces the number of bridging oxygens and increases the number of non-bridging oxygens by retaining the overall charge neutrality between the alkali or alkaline cation and oxygen anion. Higher drying temperatures increase pore densities, while the melt-quenching approach encourages the creation of higher density glasses. Band assignments for the BAG structure can be explained in detail using Fourier Transform Infrared (FTIR) and Raman spectroscopic investigations. Raman spectroscopy makes it simple to measure the concentration of the non-bridging oxygens in the silica matrix.
Copyright © by EnPress Publisher. All rights reserved.