The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
This study investigates the impact of extreme rainfall events on soil erosion in the downstream Parnaíba River Basin, located in the Brazilian Cerrado. The analysis focused on rainfall erosivity (R factor) and soil erodibility (K factor) as key indicators. The average erosivity in the region was 9051 MJ mm h−1ha−1year−1, with a variation between 7943 and 10,081 MJ mm h−1ha−1year−1, suggesting a high erosive potential, mainly in the rainiest months, from December to April. The soils of the studied area, mainly Ultisols and Chernosols, present high to very high erodibility, with K factor values ranging from 0.025 to 0.050 t h MJ−1 mm−1. Furthermore, fieldwork revealed areas, near highways, with apparently fragile soils, as well as rills and gullies, identified through photographs taken during fieldwork. These locations, due to the combination of high erosivity and susceptible soils, were considered prone to the occurrence of erosion processes, representing an additional risk to local infrastructure. The spatialization of R and K factors, along with field observations, showed that much of the area is at high risk of erosion and landslides, particularly in regions with greater topographic variability and proximity to water bodies. These results provide a basis for the development of mitigation strategies, being important for the effective prevention of landslides.
The present study aimed to delineate subsurface features and identify prospective metallic mineral deposits in the Adıyaman-Besni area, situated within the Southeastern Anatolian Thrust Belt of Turkey. This region, characterized by ophiolitic mélanges and volcanic massive sulfide (VMS) deposits in its geological framework, possesses significant mineralization potential, encompassing copper, lead, and various other sulfide minerals. Utilizing the combined methodologies of Induced Polarization (IP) and Electrical Resistivity Tomography (ERT), a comprehensive electrical mapping of the subsurface structures was conducted, revealing that mineralized zones had low resistivity and high chargeability. The findings indicate that the combined use of IP and ERT techniques yields excellent precision in accurately delineating the features of sulfide mineralization and the peripheries of mineral deposits. This study offers fundamental data for the economic assessment of prospective mineral deposits in the Adıyaman-Besni region and underscores the benefits of IP and ERT techniques in subsurface mapping and mineralization delineation investigations. The mineralized zone has low resistivity (< 50 ohm-m) and strong chargeability (> 30 ms), according to geophysical tests. It also offers a methodological framework for subsequent mineral exploration research in analogous geological formations.
The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
Copyright © by EnPress Publisher. All rights reserved.