Journal Browser
Search
Assessments on biomass production by remote sensing
Ana Azevedo
Antônio Teixeira
Inajá Sousa
Janice Leivas
Celina Takemura
Journal of Geography and Cartography 2025, 8(4); https://doi.org/10.24294/jgc11738
Submitted:06 May 2025
Accepted:16 Jun 2025
Published:26 Dec 2025
Abstract

Biomass production (BIO) and its anomalies were modeled using MODIS satellite images and gridded weather data to test an environmental monitoring system in the biomes Atlantic Forest (AF) and Caatinga (CT) within SEALBA, an agricultural growing region bordered by the states of Sergipe (SE), Alagoas (AL), and Bahia (BA), Northeast Brazil. Spatial and temporal variations on BIO between these biomes were strongly identified, with the annual long-term averages (20072023) for AF and CT of 78 ± 22 and 58 ± 17 kg ha1 d1, respectively. BIO anomalies were detected through its standardized indexesSTD (BIOSTD), comparing the results for the years from 2020 to 2023 with the long-term rates from 2007 to each of these years. The highest negative BIOSTD values were in 2023, but concentrated in CT, indicating periods with the lowest vegetation growth, regarding the long-term conditions from 2007 to 2023. The largest positive BIOSTD values were for the AF biome in 2022, evidencing the highest vegetative vigor in comparison with the long-term period 20072022. The proposed BIO monitoring system is important for environmental policies as they picture suitable periods and places for agricultural and forestry explorations, allowing sustainable managements under climate and land-use changes conditions, with possibilities for replication of the methods in other environmental conditions.

References
1. Wu C, Munger JW, Niu Z, et al. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sensing of Environment. 2010; 114(12): 2925–2939. doi: 10.1016/j.rse.2010.07.012
2. Adak T, Kumar G, Chakravarty NVK, et al. Biomass and biomass water use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments. Biomass and Bioenergy. 2013; 51: 154–162. doi: 10.1016/j.biombioe.2013.01.021
3. Teixeira A, Leivas J, Takemura C, et al. Remote sensing environmental indicators for monitoring spatial and temporal dynamics of water and vegetation conditions: applications to the Brazilian biomes. Environmental Monitoring and Assessment. 2023; 195: 944. doi: 10.21203/rs.3.rs-2573923/v1
4. Yan H, Fu Y, Xiao X, et al. Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems & Environment. 2009; 129(4): 391–400. doi: 10.1016/j.agee.2008.10.017
5. Bayma G, Nogueira SF, Adami M, et al. Estimating forage mass in Brazilian pasture-based livestock production systems through satellite and climate data integration. Computers and Electronics in Agriculture. 2025; 237: 110496. doi: 10.1016/j.compag.2025.110496
6. Yang Y, Guan H, Batelaan O, et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports. 2016; 6(1). doi: 10.1038/srep23284
7. Zhang X, Zhang B. The responses of natural vegetation dynamics to drought during the growing season across China. Journal of Hydrology. 2019; 574: 706–714. doi: 10.1016/j.jhydrol.2019.04.084
8. Zhang L, Qiao N, Huang C, et al. Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence. Remote Sensing. 2019; 11(4): 378. doi: 10.3390/rs11040378
9. Zhang G, Su X, Singh VP, et al. Appraising standardized moisture anomaly index (SZI) in drought projection across China under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies. 2021; 37: 100898. doi: 10.1016/j.ejrh.2021.100898
10. Almeida SLH de, Souza JBC, Nogueira SF, et al. Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model. Remote Sensing. 2023; 15(3): 815. doi: 10.3390/rs15030815
11. Santos JEO, Cunha FF da, Filgueiras R, et al. Performance of SAFER evapotranspiration using missing meteorological data. Agricultural Water Management. 2020; 233: 106076. doi: 10.1016/j.agwat.2020.106076
12. Zhang B, Wu Y, Zhao B, et al. Progress and Challenges in Intelligent Remote Sensing Satellite Systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2022; 15: 1814–1822. doi: 10.1109/jstars.2022.3148139
13. Shi X, Elmore A, Li X, et al. Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong, China. Biomass Bioenergy. 2008; 32: 35–43. doi: 10.1016/j.biombioe.2007.06.008
14. Molden D, Bin D, Loeve R, et al. Agricultural water productivity and savings: policy lessons from two diverse sites in China. Water Policy. 2007; 9(S1): 29–44. doi: 10.2166/wp.2007.043
15. Clementini C, Pomente A, Latini D, et al. Long-Term Grass Biomass Estimation of Pastures from Satellite Data. Remote Sensing. 2020; 12(13): 2160. doi: 10.3390/rs12132160
16. Chen Y, Guerschman J, Shendryk Y, et al. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sensing. 2021; 13(4): 603. doi: 10.3390/rs13040603
17. Rampazo NAM, Picoli MCA, De Castro Teixeira AH, et al. Water Consumption Modeling by Coupling MODIS Images and Agrometeorological Data for Sugarcane Crops. Sugar Technolgy. 2020; 23(3): 524–535. doi: 10.1007/s12355-020-00919-7
18. Beguería S, Vicente-Serrano SM, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology. 2014; 34: 3001–3023. doi: 10.1002/joc.3887
19. Bento VA, Gouveia CM, DaCamara CC, et al. A climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology. 2018; 259: 286–295. doi: 10.1016/j.agrformet.2018.05.014
20. Gouveia CM, Trigo RM, Beguería S, et al. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change. 2017; 151: 15–27. doi: 10.1016/j.gloplacha.2016.06.011
21. Teixeira AH de C, Leivas JF, Pacheco EP, et al. Biophysical Characterization and Monitoring Large‐Scale Water and Vegetation Anomalies by Remote Sensing in the Agricultural Growing Areas of the Brazilian Semi‐Arid Region. Advances in Remote Sensing for Natural Resource Monitoring. Wiley Online Library; 2021. pp. 94–109. doi: 10.1002/9781119616016.ch7
22. Vicente-Serrano SM, Miralles DG, Domínguez-Castro F, et al. Global Assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for Drought Analysis and Monitoring. Journal of Climate. 2018; 31(14): 5371–5393. doi: 10.1175/jcli-d-17-0775.1
23. Kim D, Rhee J. A drought index based on actual evapotranspiration from the Bouchet hypothesis. Geophysical Research Letters. 2016; 43(19). doi: 10.1002/2016gl070302
24. Brouwers NC, van Dongen R, Matusick G, et al. Inferring drought and heat sensitivity across a Mediterranean forest region in southwest Western Australia: a comparison of approaches. Forestry. 2015; 88(4): 454–464. doi: 10.1093/forestry/cpv014
25. Peters AJ, Walter-Shea EA, Ji L, et al. Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering & Remote Sensing. 2002; 68(1): 71–75.
26. Hao Z, AghaKouchak A. Multivariate Standardized Drought Index: A parametric multi-index model. Advances in Water Resources. 2013; 57: 12–18. doi: 10.1016/j.advwatres.2013.03.009
27. Zhang Y, Xiao X, Zhou S, et al. Canopy and physiological controls of GPP during drought and heat wave. Geophysical Research Letters. 2016; 43(7): 3325–3333. doi: 10.1002/2016gl068501
28. Ceschia E, Béziat P, Dejoux JF, et al. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment. 2010; 139(3): 363–383. doi: 10.1016/j.agee.2010.09.020
29. Zhao M, Running SW. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science. 2010; 329(5994): 940–943. doi: 10.1126/science.1192666
30. Lewinsohn TM, Prado PI. How Many Species Are There in Brazil? Conservation Biology. 2005; 19(3): 619–624. doi: 10.1111/j.1523-1739.2005.00680.x
31. Mariano DA, Santos CAC dos, Wardlow BD, et al. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of Environment. 2018; 213: 129–143. doi: 10.1016/j.rse.2018.04.048
32. Ribeiro MC, Metzger JP, Martensen AC, et al. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation. 2009; 142(6): 1141–1153. doi: 10.1016/j.biocon.2009.02.021
33. Santos MG, Oliveira MT, Figueiredo KV, et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology. 2014; 26(1): 83–99. doi: 10.1007/s40626-014-0008-0
34. Silva PF da, Lima JR de S, Antonino ACD, et al. Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments. 2017; 147: 71–82. doi: 10.1016/j.jaridenv.2017.09.003
35. Marques TV, Mendes K, Mutti P, et al. Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agricultural and Forest Meteorology. 2020; 287: 107957. doi: 10.1016/j.agrformet.2020.107957
36. Pereira D dos R, Mello CR de, Silva AM da, et al. Evapotranspiration and estimation of aerodynamic and stomatal conductance in a fragment of Atlantic Forest in mantiqueira range region, MG. CERNE. 2010; 16(1): 32–40. doi: 10.1590/s0104-77602010000100004
37. Teixeira AH de C, Bastiaanssen WGM, Ahmad MD, et al. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. Journal of Hydrology. 2008; 362(1–2): 110–127. doi: 10.1016/j.jhydrol.2008.08.011
38. Reinermann S, Asam S, Kuenzer C. Remote sensing of grassland production and management A review. Remote Sensing. 2020; 12: 1949. doi: 10.3390/rs12121949.
39. Claverie M, Demarez V, Duchemin B, et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sensing of Environment. 2012; 124: 844–857. doi: 10.1016/j.rse.2012.04.005
40. Tesfaye K, Walker S, Tsubo M. Radiation interception and radiation use efficiency of three grain legumes under water deficit conditions in a semi-arid environment. European Journal of Agronomy. 2006; 25(1): 60–70. doi: 10.1016/j.eja.2006.04.014
41. Monteith JL. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B, Biological Sciences. 1977; 281(980): 277–294. doi: 10.1098/rstb.1977.0140
42. Zhao M, Heinsch FA, Nemani RR, et al. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment. 2005; 95(2): 164–176. doi: 10.1016/j.rse.2004.12.011
43. Bastiaanssen WGM, Ali S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems & Environment. 2003; 94: 321–340. doi: 10.1016/S0167-8809(02)00034-8
44. Nyolei D, Nsaali M, Minaya V, et al. High resolution mapping of agricultural water productivity using SEBAL in a cultivated African catchment, Tanzania. Physics and Chemistry of the Earth, Parts A/B/C. 2019; 112: 36–49. doi: 10.1016/j.pce.2019.03.009
45. Zwart SJ, Bastiaanssen WGM, de Fraiture C, et al. WATPRO: A remote sensing based model for mapping water productivity of wheat. Agricultural Water Management. 2010; 97(10): 1628–1636. doi: 10.1016/j.agwat.2010.05.017
46. Teixeira AH de C. Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation. Remote Sensing. 2010; 2(5): 1287–1319. doi: 10.3390/rs0251287
47. Teixeira AH de C, Scherer-Warren M, Hernandez F, Andrade R, Leivas J. Large-Scale Water Productivity Assessments with MODIS Images in a Changing Semi-Arid Environment: A Brazilian Case Study. Remote Sensing. 2013; 5(11): 5783–5804. doi: 10.3390/rs5115783
48. Consoli S, Vanella D. Comparisons of satellite-based models for estimating evapotranspiration fluxes. Journal of Hydrology. 2014; 513: 475–489. doi: 10.1016/j.jhydrol.2014.03.071
49. Procopio SDO, Cruz MAS, de Almeida MRM, et al. SEALBA: Região de Alto Potencial Agrícola no Nordeste Brasileiro. Embrapa Tabuleiros Costeiros; 2019. p. 62.
50. Francisquini MI, Lorente FL, Ruiz Pessenda LC, et al. Cold and humid Atlantic Rainforest during the last glacial maximum, northern Espírito Santo state, southeastern Brazil. Quaternary Science Reviews. 2020; 244: 106489. doi: 10.1016/j.quascirev.2020.106489
51. Almagro A, Oliveira PTS, Nearing MA, et al. Projected climate change impacts in rainfall erosivity over Brazil. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-08298-y
52. Allen RG, Pereira LS, Raes D, et al. Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements. FAO irrigation and drainage paper 56. FAO; 1998.
53. de Bruin HAR. From Penman to Makkink. In: Hooghart JC (editors). Proceedings and Information: TNO Committee on Hydrological Sciences. Gravenhage; 1987. Volume 39. pp. 5–31.
54. Venancio LP, Mantovani EC, Amaral CH do, et al. Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithm. Scientia Agricola. 2021; 78(4). doi: 10.1590/1678-992x-2019-0261
55. Leivas JF, Andrade RG, Victoria DDC, et al. Monitoramento da seca 2011/2012 no nordeste brasileiro a partir do satélite spot-vegetation e TRMM. Agricultural Engineering. 2014; 22(3): 211–221. doi:10.13083/1414-3984.v22n03a03.
56. Seneviratne SI, Corti T, Davin EL, et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews. 2010; 99(3–4): 125–161. doi: 10.1016/j.earscirev.2010.02.004
57. Rebello VPA, Getirana A, Rotunno Filho OC, et al. Spatiotemporal vegetation response to extreme droughts in eastern Brazil. Remote Sensing Applications: Society and Environment. 2020; 18: 100294. doi: 10.1016/j.rsase.2020.100294
58. Teixeira AH de C, Takemura CM, Leivas JF, et al. Water productivity monitoring by using geotechnological tools in contrasting social and environmental conditions: Applications in the São Francisco River basin, Brazil. Remote Sensing Applications: Society and Environment. 2020; 18: 100296. doi: 10.1016/j.rsase.2020.100296
59. Vicente-Serrano S, Cabello D, Tomás-Burguera M, et al. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sensing. 2015; 7(4): 4391–4423. doi: 10.3390/rs70404391
60. Guauque-Mellado D, Rodrigues A, Terra M, et al. Evapotranspiration under Drought Conditions: The Case Study of a Seasonally Dry Atlantic Forest. Atmosphere. 2022; 13(6): 871. doi: 10.3390/atmos13060871
61. Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change. Nature Climate Change. 2015; 6(2): 166–171. doi: 10.1038/nclimate2837
62. Seddon AW, Macias-Fauria M, Long PR, et al. Sensitivity of global terrestrial ecosystems to climate variability. Nature. 2016; 531: 229–232. doi: 10.1038/nature16986
63. Zhou L, Zhou G. Measurement and modelling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. Journal of Hydrology. 2009; 372(1–4): 41–47. doi: 10.1016/j.jhydrol.2009.03.033
64. Mata-González R, McLendon T, Martin DW. The Inappropriate Use of Crop Transpiration Coefficients (Kc) to Estimate Evapotranspiration in Arid Ecosystems: A Review. Arid Land Research and Management. 2005; 19(3): 285–295. doi: 10.1080/15324980590951469
65. Mateos L, González-Dugo MP, Testi L, et al. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agricultural Water Management. 2013; 125: 81–91. doi: 10.1016/j.agwat.2012.11.005
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP