One of the most frequently debated subjects in international forums is economic growth, which is regarded as a global priority. Consequently, researchers have turned their attention from conventional economic growth at a single average coefficient to divisible economic growth at levels of its value. Although the existing literature has discussed several determinants of economic growth, our article contributes to examining the sources of economic growth in African countries during the generations of reforms from 1990 to 2019 and in the context of economic vulnerability. The variables used in the analysis are gross domestic product, trade openness, financial development, and economic vulnerability. The study uses a quantile regression econometric model to examine these variables at different stages of reform. Quantile regression (QR) estimates for quantiles 0.05 to 0.95 showed mixed results: financial development is favorable to African economic growth at all quantile levels. However, economic vulnerability is a major impediment to economic growth at all quantile levels. In addition, it was found that a high degree of trade openness has a detrimental effect on African economic growth from quantile 0.5 of the dependent variable. Finally, another important result proves that financial development is a remedy for decision-makers against economic vulnerability.
Credit policies for clean and renewable energy businesses play a crucial role in supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity of these companies to prioritize lending is essential given the limited capital available. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust machine learning algorithms for addressing complex clustering problems. Additionally, hyperparameter selection within these models is effectively enhanced through the support of a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage the strength of these advanced machine learning techniques, this paper aims to develop SVM and ANN models, optimized with the PSO, for the clustering problem of green credit capacity in the renewable energy industry. The results show low Mean Square Error (MSE) values for both models, indicating high clustering accuracy. The credit capabilities of wind energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient operation of banking green credit policies.
This study conducted a systematic review of the existing literature on rhythmic gymnastics. Through searching databases such as PubMed, Web of Science, and Scopus, 37 out of 2319 articles were selected, covering training and physical fitness, nutrition and metabolism, as well as sports injuries and rehabilitation. The findings revealed that: (1) Core physical training significantly enhanced athletes’ performance; (2) Inadequate nutritional intake was prevalent; (3) The incidence of sports injuries was high, particularly those resulting from overtraining. The conclusion emphasizes the need to enhance strength training, optimize nutritional management, and further investigate injury prevention and rehabilitation measures to enhance athletes’ performance and health status.
This study analyzes the interaction between legitimacy, innovation, uncertainty, and electric vehicle (EV) purchase intention in Spain, Portugal, Italy, and Greece. Using partial least squares structural equation modeling (PLS-SEM) and data from 2016 to 2023, the relationships between these key variables are assessed. The results show that legitimacy has a positive impact on purchase intention, while innovation influences legitimacy but does not directly affect purchase intention. Uncertainty moderates these relationships in complex ways. The findings suggest that enhancing the perception of legitimacy is crucial to increase EV purchase intention, and strategies promoting innovation and managing uncertainty can improve market acceptance.
Within the last four years, Lithuania has faced different foreign policy challenges due to geopolitical situations such as the Ukraine-Russia war, the migration crisis on the border with Belarus, and the conflict with China. After opening a Taiwanese representative office in Vilnius, China downgraded diplomatic relations with Lithuania. The purpose of the article is to assess the impact of the changes on international economic relations between Lithuania and China. The paper employs descriptive statistics, correlation-regression, sensitivity analysis, and agglomerative hierarchical cluster analysis. The research is based on the impact of international economic relations on international trade by analyzing separately imports and exports. Our research fills a gap in international relations and globalization theory by focusing on international collaboration between small and large countries, while the large country implements economic sanctions. In the context of Lithuania, exports to China and imports from China comprise a small percentage in the structure of international trade. Lithuania’s GDP level reacts sensitively to changes in export and import data only if they change drastically (over 50%).
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Copyright © by EnPress Publisher. All rights reserved.