Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005–2013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs).
The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area’s most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district’s total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Ad
This work investigated the photocatalytic properties of polymorphic nanostructures based on silica (SiO2) and magnetite (Fe3O4) for the photodegradation of tartrazine yellow dye. In this sense, a fast, easy, and cheap synthesis route was proposed that used sugarcane bagasse biomass as a precursor material for silica. The Fourier transform infrared (FTIR) spectroscopy results showed a decrease in organic content due to the chemical treatment with NaOH solution. This was confirmed through the changes promoted in the bonds of chromophores belonging to lignin, cellulose, and hemicellulose. This treated biomass was calcined at 800 ℃, and FTIR and X-ray diffraction (XRD) also confirmed the biomass ash profile. The FTIR spectrum showed the formation of silica through stretching of the chemical bonds of the silicate group (Si-O-Si), which was confirmed by DXR with the predominance of peaks associated with the quartz phase. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) confirmed the morphological and chemical changes due to the chemical and thermal treatments applied to this biomass. Using the coprecipitation method, we synthesized Fe3O4 nanoparticles (Np) in the presence of SiO2, generating the material Fe3O4/SiO2-Np. The result was the formation of nanostructures with cubic, spherical, and octahedral geometries with a size of 200 nm. The SEM images showed that the few heterojunctions formed in the mixed material increased the photocatalytic efficiency of the photodegradation of tartrazine yellow dye by more than two times. The degradation percentage reached 45% in 120 min of reaction time. This mixed material can effectively decontaminate effluents composed of organic pollutants containing azo groups.
Copyright © by EnPress Publisher. All rights reserved.