The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
Farm households in developing countries are often involved in a variety of livelihood income-generating activities to achieve basic needs and enhance food security. However, little attention has been given to investigating the effect of livelihood diversification strategies on the adoption of agricultural land management practices. This study explored the nexus between livelihood diversification and Agricultural Land Management (ALM) practices in the Southern Ethiopian Highlands. Data for this study were gathered through a structured questionnaire, interviews, and focus group discussions. A total of 423 sample respondents were selected by using multistage random sampling techniques. The data were analyzed using the Inverse Herfindahl Hirschman Diversity Index (IHHDI), the multinomial logit model (MNL), and the probit regression model. The findings of the study revealed that on-farm income activities are the most dominant livelihood income strategies (69.1%), followed by non-farm (21%) and off-farm (9.64%). The multinomial logit model analysis demonstrated that variables such as sex, education, family size, distance to market, land size, extension contact, membership in cooperatives, and household income were the major drivers of farmers income diversification activities (p<0.05). The results of the probit analysis indicated that income from crop production, daily labor work, rents from farmland, and farm assets have a positive and significant effect on households' decisions to implement ALM practices. In contrast, incomes from remittance and migrant sources have a negative but statistically significant impact on the adoption of ALM measures. The farm household sources of income-generating strategies substantially affected the adoption intensity of ALM measures. Income generated from the on-farm sector alone cannot be considered a core income-generating activity for households or a means of achieving food security. Therefore, land management policies and program implementations should consider farmers’ livelihood diversification and income-generating strategies. In addition, such interventions need to promote sustainable farming practices, enhance innovation, and related measures for the adoption of ALM measures to ensure land sustainability.
The debate on the effect of work environment on job satisfaction is very inconclusive. Most of the existing literature has focused on either the developed economy or job satisfaction and other variables other than the dimensions of the work environment. To fill the contextual and conceptual gap this study examined the effect of dimensions of work environment on job satisfaction among public sector workers in a developing economy. The study used the quantitative method and positivist philosophical viewpoint but specifically, the explanatory design was used to guide the study. A structured questionnaire was used for data collection and data analysis was done by partial least square modelling. The study found that the three dimensions of work environment such as physical, psychological and administrative work environment had a significant relationship with job satisfaction among public workers in a developing economy. It was recommended that the management of public sector organisations should improve upon the psychological, physical and administrative work environment to ensure job satisfaction among their workers.
The aim of this study was to elucidate the expected moderating effect exerted by institutional owners on the intricate correlation between the characteristics of boards of directors and the issue of earnings management, as gauged by the loan loss provisions.The sample encompassed all the banks listed on the Amman Stock Exchange (ASE) over the period between 2010 and 2022, representing a total of 151 observations. The results derived from the examination clearly demonstrate that the institutional owners have a key impact on augmenting the monitoring tasks and responsibilities of the boards of directors across the study sample. The results revealed the fundamental role of such owners in strengthening the supervisory tasks carried out by boards of directors in Jordan. A panel data model has been used in the analysis. The results of this study show that the presence of the owner of an institution has a discernible moderating role in the banks' monitoring landscape. Indeed, their presence strengthens the monitoring tasks of the banks’ boards by underscoring the quest to restrict the EM decisions. Interestingly, the results support the monitoring proposition outlined by agency theory, which introduced CG recommendations as a deterrent tool to reduce the expectation gap between banks' owners and their representatives.
Copyright © by EnPress Publisher. All rights reserved.