Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of and , while temperature profile increases for increasing values of and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of and the drag coefficient increases and the Nusselt number decreases for rising values of and The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.
This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
The wet saturated flue gas discharged by coal-fired utility boilers leads to a large amount of low-temperature waste heat loss. Inorganic ceramic membrane is acid-base resistant and has strong chemical stability. It is an ideal material for recovering low-temperature waste heat from flue gas. The experiment of waste heat recovery of flue gas was carried out with inorganic ceramic membrane as the core, and the characteristic parameters of low-temperature flue gas at the tail of the boiler were analyzed; taking 316 L stainless steel as the comparative object, the strengthening effect of inorganic ceramic film on improving heat recovery power and composite heat transfer coefficient was discussed. The results show that the waste heat recovery of flue gas is mainly the evaporation latent heat recovery of water, accounting for about 90%; circulating water is used as cooling medium, and the waste heat recovery capacity of flue gas is stronger; compared with circulating water, when air is used as the cooling medium, the effect of inorganic ceramic membrane flue gas waste heat recovery is more significant, and the enhancement coefficient is as high as 9; increasing the flue gas flow is helpful to improve the heat recovery power and composite heat transfer coefficient; at the same time, inorganic ceramic membrane can also recover condensate with high water quality. The results of this paper can provide a reference for the application of inorganic ceramic membrane in flue gas waste heat recovery.
One-dimensional unsteady theoretical models of three different photovoltaic module installation modes are established. Through MATLAB modeling and simulation, the influence of photovoltaic modules on roof heat transfer in different layout modes is compared. Comparing with ordinary roof, the shading effect of photovoltaic roof in summer and heat preservation effect in winter was analyzed. The results show that the PV roof layout with ventilation channel is better in summer. The proof layout with closed flow channel is better in winter.
Copyright © by EnPress Publisher. All rights reserved.