Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
There are several factors that generate postharvest losses of Citrus sinensis, but none have been focused on the central jungle of the Junín region of Peru. The objective of this research was to evaluate postharvest losses of Citrus sinensis in the province of Satipo, Junín region of Peru, considering the stages of the production chain. The methodology was applied to descriptive and cross-sectional design. A sample of 10 orange trees, 3 transport intermediaries and 5 traders selected for compliance with minimum volume and quality requirements were used. The °Brix, pH and acidity characteristics of the fruit were determined. Subsequently, absolute and percentage losses were quantified through direct observation, surveys and interviews. The main postharvest losses of Citrus sinensis were 1.50% in harvesting and detaching, 1.75% in transport to the collection center, 2.23% in storage and transport by intermediaries, and 2.90% in storage and sale by retailers. The overall loss was 8.12% throughout the production chain and US$5.75 per MT of C. sinensis harvested. The main damages found were mechanical and biological, caused by poor harvesting and packaging techniques, precarious storage and careless transport of the merchandise.
Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
In regard to national development (ND), this review article (which is basically a perspective approach) presents retroactive and forward-looking perspectives on university education in Nigeria. In the past, particularly during the 1970s, the Nigerian university (NU) sector was among the most outstanding in Africa as well as globally. The best institutions drew students from around Africa, who flocked to Nigeria to study. The NU structure evidently contained four essential components for an international and effective university system, viz., world-class instructors, world-class students, a conducive learning environment, and global competitiveness. The NU structure, nevertheless, has undergone some neglect over the past thirty years and lost its distinctive identity, which raises questions about its function and applicability at the current stage of ND. Hence, some retrospective and forward-looking observations on university education in Nigeria in connection to ND are conveyed in this perspective article uses basically published articles and other relevant literature, as well as other sources and data from available literature. Hitherto, there is an urgent need for reinforcement of the university system in order to give it the desired and comparable international quality and functionality needed to meet the demands of current issues and the near future. However, this article conveys an intense belief and conviction that the NU system is still important for both the political and socioeconomic development (growth) of the nation. The article concludes by recommending the way forward in this regard.
Enhancing the emphasis on incorporating sustainable practices reinforces a linear transition towards a circular economy by organizations. Nevertheless, although studies on circular economy demonstrate an increasing trend, the drivers that support circular economy practices towards sustainable business performance in the Small and Medium-Sized Enterprise (SME) sector, especially in developing nations, demand exploration. Accordingly, the study examines circular economy drivers, i.e., green human resource management, in establishing sustainability performance and environmental dynamism as moderating variables. The study engaged 207 SMEs and 621 respondents who were analyzed utilizing structural equation modeling. The analysis indicated that sustainable business performance was affected by green human resource management and a circular economy. Subsequently, the circular economy mediated the linkage between green human resources management and sustainable business performance. The environmental dynamism moderated the linkage between green human resources management and the circular economy.
Copyright © by EnPress Publisher. All rights reserved.