In this research, we employed multivariate statistical methods to investigate the perspectives of small and medium-sized enterprises (SMEs) concerning the Extended Producer Responsibility (EPR) regulation and their apprehensions related to EPR compliance. The EPR regulation, which places the responsibility of waste management on producers, has significant financial and administrative implications, particularly for SMEs. A sample of 114 businesses was randomly selected, and the collected data underwent comprehensive analysis. Our findings highlight that a notable proportion of businesses (44.7%) possess knowledge of the EPR regulation’s provisions, whereas only a marginal fraction (1.8%) lacks sufficient familiarity. We also explored the interplay between opinions on the EPR regulation and concerns regarding its financial and administrative implications. Our results establish a significant correlation between EPR regulation opinions and concerns, with adverse opinions prominently influencing concerns, particularly regarding financial burdens and administrative workloads. These outcomes, derived from the application of multivariate statistical techniques, provide valuable insights for enhancing the synergy between environmental regulations and business practices. EPR regulation significantly affects SMEs in terms of financial, administrative, and legal obligations, thus our study highlights that policymakers may need to consider additional support mechanisms to alleviate the regulatory burden on SMEs, fostering a more effective and sustainable implementation of the EPR regulation.
Gender inequality is a structural social problem, associated with history, culture, education, religion and politics, this difficulty occurs in all social institutions due to the heterogeneity of the structure in the sexual division of labor, socioeconomic inequality, inclusion and inequity in participation in the public space between men and women. Public policies and attitudes towards gender equality in Peruvian university students were analyzed according to socio-academic variables. A descriptive-comparative study, with a quantitative approach, and not experimental cross-sectional, involved 776 university students from a public and a private university in Peru, intentionally selected. Adaptive attitudes (57.9%) were found to tend to be sexist; Likewise, in the study dimensions, the same trend was found in the sociocultural and relational levels, while in the personal dimension students develop sexist attitudes (62.4%). It is concluded, attitudes towards gender equality are sexist reproduction that is influenced by the sociocultural environment of the family, this situation occurs to a greater extent in men, while female students present attitudes of equality in greater intensity to seek equity in the distribution of roles.
Artificial intelligence (AI) has rapidly evolved, transforming industries and addressing societal challenges across sectors such as healthcare and education. This study provides a state-of-the-art overview of AI research up to 2023 through a bibliometric analysis of the 50 most influential papers, identified using Scopus citation metrics. The selected works, averaging 74 citations each, encompass original research, reviews, and editorials, demonstrating a diversity of impactful contributions. Over 300 contributing authors and significant international collaboration highlight AI’s global and multidisciplinary nature. Our analysis reveals that research is concentrated in core journals, as described by Bradford’s Law, with leading contributions from institutions in the United States, China, Canada, the United Kingdom, and Australia. Trends in authorship underscore the growing role of generative AI systems in advancing knowledge dissemination. The findings illustrate AI’s transformative potential in practical applications, such as enabling early disease detection and precision medicine in healthcare and fostering adaptive learning systems and accessibility in education. By examining the dynamics of collaboration, geographic productivity, and institutional influence, this study sheds light on the innovation drivers shaping the AI field. The results emphasize the need for responsible AI development to maximize societal benefits and mitigate risks. This research provides an evidence-based understanding of AI’s progress and sets the stage for future advancements. It aims to inform stakeholders and contribute to the ongoing scientific discourse, offering insights into AI’s impact at a time of unprecedented global interest and investment.
In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
With the purpose of knowing the phytosocilogy of weeds associated to a carrot crop (Daucus carota L.) under conditions of the municipalities of Ventaquemada and Jenesano-Boyacá, one lot per municipality destined to carrot cultivation was selected and a W-shaped layout was made covering an area of 500 m2. Relative density, relative frequency, relative dominance and the importance value index (IVI) were calculated, as well as the Alpha and Beta diversity indices for the sampled areas. A total of 6 families and 11 species were counted, of which 63.64% were represented by annual plants and 36.36% by perennial plants. The class Liliopsida (Monocotyledon) was represented by the Poaceae family. The Magnoliopsida class (Dicotyledon) was represented by the following families: Asteraceae, Brassicaceae, Boraginaceae, Leguminosaceae, Polygonaceae, the last one being the one with the highest number of species. The species R. crispus and P. nepalense were the ones with the highest values of Importance Value Index (IVI) with 0.953 and 0.959, respectively. According to the Shannon-Wiener diversity and Simpson’s dominance indices, the evaluated areas presented a low species diversity and a high probability of dominant species. The results obtained can serve as a basis and tool for carrot growers in the evaluated areas to define management plans for the associated weeds and thus optimize yields in this crop.
Copyright © by EnPress Publisher. All rights reserved.