This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005–2013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs).
The persistence of coastal ecosystems is jeopardized by deforestation, conversion, and climate change, despite their capacity to store more carbon than terrestrial vegetation. The study’s objectives were to investigate how spatiotemporal changes impacted blue carbon storage and sequestration in the Satkhira coastal region of Bangladesh over the past three decades and, additionally to assess the monetary consequences of changing blue carbon sequestration. For analyzing the landscape change (LSC) patterns of the last three decades, considering 1992, 2007, and 2022, the LSC transformations were evaluated in the research area. Landsat 5 of 1992 and 2007, and Landsat 8 OLI-TIRS multitemporal satellite images of 2022 were acquired and the Geographical Information System (GIS), Remote Sensing (RS) techniques were applied for spatiotemporal analysis, interpreting and mapping the output. The spatiotemporal dynamics of carbon storage and sequestration of 1992, 2007, and 2022 were evaluated by the InVEST carbon model based on the present research years. The significant finding demonstrated that anthropogenic activity diminished vegetation cover, vegetation land decreased by 7.73% over the last three decades, and agriculture land converted to mariculture. 21.74% of mariculture land increased over the last 30 years, and agriculture land decreased by 12.71%. From 1992 to 2022, this constant LSC transformation significantly changed carbon storage, which went from 11,706.12 Mega gram (Mg) to 9168.03 Mg. In the past 30 years, 2538.09 Mg of carbon has been emitted into the atmosphere, with a combined market worth of almost 0.86 million USD. The findings may guide policymakers in establishing a coastal management strategy that will be beneficial for carbon storage and sequestration to balance socioeconomic growth and preserve numerous environmental services.
Biomass production (BIO) and its anomalies were modeled using MODIS satellite images and gridded weather data to test an environmental monitoring system in the biomes Atlantic Forest (AF) and Caatinga (CT) within SEALBA, an agricultural growing region bordered by the states of Sergipe (SE), Alagoas (AL), and Bahia (BA), Northeast Brazil. Spatial and temporal variations on BIO between these biomes were strongly identified, with the annual long-term averages (2007–2023) for AF and CT of 78 ± 22 and 58 ± 17 kg ha−1 d−1, respectively. BIO anomalies were detected through its standardized indexes—STD (BIOSTD), comparing the results for the years from 2020 to 2023 with the long-term rates from 2007 to each of these years. The highest negative BIOSTD values were in 2023, but concentrated in CT, indicating periods with the lowest vegetation growth, regarding the long-term conditions from 2007 to 2023. The largest positive BIOSTD values were for the AF biome in 2022, evidencing the highest vegetative vigor in comparison with the long-term period 2007–2022. The proposed BIO monitoring system is important for environmental policies as they picture suitable periods and places for agricultural and forestry explorations, allowing sustainable managements under climate and land-use changes conditions, with possibilities for replication of the methods in other environmental conditions.
Copyright © by EnPress Publisher. All rights reserved.