The characteristics of agricultural products are influenced by the ecosystem, from the perspective of biotic and abiotic factors, which produce in the plant physiological responses and in turn in the fruit unique physicochemical properties, which are the basis for designations of origin and strategies to add value to the product in the current market. In the present work, ten cocoa materials (Theobroma cacao L.) were selected for their outstanding productivity (FSV41, FLE3, FEAR5, FSA12, FEC2, SCC23, SCC80, SCC55, ICS95 and CCN51), which were established in the departments of Santander (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.) and Huila (931 m a.s.l.). These were established in the departments of Santander (931 m a.s.l.), Huila (885 m a.s.l.) and Arauca (204 m a.s.l.), the main cocoa-producing areas in Colombia. For the evaluation of the physical characteristics of the collected materials, 21 quantitative descriptors were used to determine the physical variability of the fruit according to clone and place of collection. The data collected were analyzed by means of Pearson’s correlation matrix and principal component analysis, it was possible to identify those descriptors that contribute most to the variability among materials (ear index, diameter length ratio, seed weight and diameter, and fruit weight and length). In addition, it was possible to verify the effect of the place of harvest on the physical characteristics of the materials, high-lighting the importance of the adaptation study prior to the planting of the cocoa material, with the objective of guaranteeing a premium, productive and quality cocoa crop for the industry, which is competitive in the market.
Carbon-based hollow structured nanomaterials have become one of the hot areas for research and development of hollow structured nanomaterials due to their unique structure, excellent physicochemical properties and promising applications. The design and synthesis of novel carbon-based hollow structured nanomaterials are of great scientific significance and wide application value. The recent research on the synthesis, structure and functionalization of carbon-based hollow structured nanomaterials and their related applications are reviewed. The basic synthetic strategies of carbon-based hollow structure nanomaterials are briefly introduced, and the structural design, material functionalization and main applications of carbon-based hollow structure nanomaterials are described in detail. Finally, the current challenges and opportunities in the synthesis and application of carbon-based hollow structured nanomaterials are discussed.
In Côte d’Ivoire, the government and its development partners have implemented a national strategy to promote agroforestry and reforestation systems as a means to combat deforestation, primarily driven by agricultural expansion, and to increase national forest cover to 20% by 2045. However, the assessment of these systems through traditional field-based methods remains labor-intensive and time-consuming, particularly for the measurement of dendrometric parameters such as tree height. This study introduces a remote sensing approach combining drone-based Airborne Laser Scanning (ALS) with ground-based measurements to enhance the efficiency and accuracy of tree height estimation in agroforestry and reforestation contexts. The methodology involved two main stages: first, the collection of floristic and dendrometric data, including tree height measured with a laser rangefinder, across eight (8) agroforestry and reforestation plots; second, the acquisition of ALS data using Mavic 3E and Matrice 300 drones equipped with LiDAR sensors to generate digital canopy models for tree height estimation and associated error analysis. Floristic analysis identified 506 individual trees belonging to 27 genera and 18 families. Tree height measurements indicated that reforestation plots hosted the tallest trees (ranging from 8 to 16 m on average), while cocoa-based agroforestry plots featured shorter trees, with average heights between 4 and 7 m. A comparative analysis between ground-based and LiDAR-derived tree heights showed a strong correlation (R2 = 0.71; r = 0.84; RMSE = 2.24 m; MAE = 1.67 m; RMSE = 2.2430 m and MAE = 1.6722 m). However, a stratified analysis revealed substantial variation in estimation accuracy, with higher performance observed in agroforestry plots (R2 = 0.82; RMSE = 2.21 m and MAE = 1.43 m). These findings underscore the potential of Airborne Laser Scanning as an effective tool for the rapid and reliable estimation of tree height in heterogeneous agroforestry and reforestation systems.
Cobalt-based sulfides have emerged as promising candidates for next-generation high-performance anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and reversible conversion reaction mechanisms. However, their practical application is hindered by volume expansion effects and relatively low rate performance. Guided by theoretical principles, this study synthesizes nanoscale Bi/CoS-C and Bi/Co4S3-C (denoted as Bi/CS-C) composite materials using Co and Bi2S3 as precursors via a solid-state ball milling method. The electrochemical properties of these materials were systematically investigated. When employed as anodes for LIBs, Bi/CoS-C and Bi/CS-C exhibit excellent rate capabilities. At current densities of 0.1, 0.5, 1, 4, and 10 A/g, the reversible capacities of Bi/CoS-C were 939.2, 730.7, 655.6, 508.1, and 319 mAh/g, respectively. In contrast, Bi/CS-C exhibited reversible capacities of 760.4, 637.6, 591.9, 484.3, and 295.4 mAh/g, respectively. Moreover, Co4S3, as an active component, enables superior long-cycle performance compared to CoS. After 300 cycles at 0.2 A/g, the Bi/CoS-C and Bi/CS-C electrodes retained capacities of 193.1 and 788.8 mAh/g, respectively. This study demonstrates that nanostructure design and carbon-based composite materials can effectively mitigate the volume expansion issue of cobalt-based sulfides, thereby enhancing their rate performance and cycling stability. This strategy provides new insights for the development of high-performance anode materials for lithium-ion batteries and is expected to accelerate their practical application in next-generation energy storage devices.
The WRKY gene family plays a very diverse role in plant growth and development. These genes contained an evolutionarily conserved WRKY DNA binding domain, which shows functional diversity and extensive expansion of the gene family. In this study, we conducted a genome-wide comparative analysis to investigate the evolutionary aspects of the WRKY gene family across various plant species and revealed significant expansion and diversification ranging from aquatic green algae to terrestrial plants. Phylogeny reconstruction of WRKY genes was performed using the Maximum Likelihood (ML) method; the genes were grouped into seven different clades and further classified into algae, bryophytes, pteridophytes, dicotyledons, and monocotyledons subgroups. Furthermore, duplication analysis showed that the increase in the number of WRKY genes in higher plant species was primarily due to tandem and segmental duplication under purifying selection. In addition, the selection pressures of different subfamilies of the WRKY gene were investigated using different strategies (classical and Bayesian maximum likelihood methods (Data monkey/PAML)). The average dN/dS for each group are less than one, indicating purifying selection. Our comparative genomic analysis provides the basis for future functional analysis, understanding the role of gene duplication in gene family expansion, and selection pressure analysis.
Copyright © by EnPress Publisher. All rights reserved.