Cancer is the 3rd leading cause of death globally, and the countries with low-to-middle income account for most cancer cases. The current diagnostic tools, including imaging, molecular detection, and immune histochemistry (IHC), have intrinsic limitations, such as poor accuracy. However, researchers have been working to improve anti-cancer treatment using different drug delivery systems (DDS) to target tumor cells more precisely. Current advances, however, are enough to meet the growing call for more efficient drug delivery systems, but the adverse effects of these systems are a major problem. Nanorobots are typically controlled devices made up of nanometric component assemblies that can interact with and even diffuse the cellular membrane due to their small size, offering a direct channel to the cellular level. The nanorobots improve treatment efficiency by performing advanced biomedical therapies using minimally invasive operations. Chemotherapy’s harsh side effects and untargeted drug distribution necessitate new cancer treatment trials. The nanorobots are currently designed to recognize 12 different types of cancer cells. Nanorobots are an emerging field of nanotechnology with nanoscale dimensions and are predictable to work at an atomic, molecular, and cellular level. Nanorobots to date are under the line of investigation, but some primary molecular models of these medically programmable machines have been tested. This review on nanorobots presents the various aspects allied, i.e., introduction, history, ideal characteristics, approaches in nanorobots, basis for the development, tool kit recognition and retrieval from the body, and application considering diagnosis and treatment.
Despite Cameroon’s immense sand reserves, several enterprises continue to import standardized sands to investigate the properties of concretes and mortars and to guarantee the durability of built structures. The present work not only falls within the scope of import substitution but also aims to characterize and improve the properties of local sand (Sanaga) and compare them with those of imported standardized sand widely used in laboratories. Sanaga sand was treated with HCl and then characterized in the laboratory. The constituent minerals of Sanaga sand are quartz, albite, biotite, and kaolinite. The silica content (SiO2) of this untreated sand is 93.48 wt.%. After treatment, it rose 97.5 wt.% for 0.5 M and 97.3 wt.% for 1 M HCl concentration. The sand is clean (ES, 97.67%–98.87%), with fineness moduli of 2.45, 2.48, and 2.63 for untreated sand and sand treated with HCl concentrations of 0.5 and 1 M respectively. The mechanical strengths (39.59–42.4 MPa) obtained on mortars made with untreated Sanaga sand are unsatisfactory compared with those obtained on mortars made with standardized sand and with the expected strengths. The HCl treatment used in this study significantly improved these strengths (41.12–52.36 MPa), resulting in strength deficiencies of less than 10% after 28 curing days compared with expected values. Thus, the treatment of Sanaga sand with a 0.5 M HCl concentration offers better results for use as standardized sand.
Depression is a mental disorder caused by various causes with significant and persistent depressed mood as the main clinical feature, and is the most common mental illness worldwide and in our country. The number of patients with depression worldwide was as high as 350 million in 2017, and the number of patients with depression in our country was nearly 100 million in 2019. The greatest danger of depression is self-injurious and suicidal behaviour, and this behaviour carries a high medical burden. Medication is the most costly treatment for depression in China, and while it is an effective way to treat patients with depression, it has many side effects and poor patient compliance. Non-pharmacological treatments commonly used in clinical practice include physiotherapy and psychotherapy. Physiotherapy is commonly used in non-convulsive electroconvulsive therapy, but its clinical efficacy is uncertain and it can also cause adverse effects such as heart failure and arrhythmias, which are poorly tolerated by patients. Psychotherapy is also a common non-pharmacological therapy. Cognitive therapy is a common form of psychotherapy, but the cycle of cognitive therapy is too long, the cost to the patient is high, and the patient’s cognitive ability has certain requirements. Music therapy is a combination of art and science. It is a cross-discipline that combines body, movement, dance and psychology and is a method of psychotherapy that has biological, psychological and social functions to compensate for deficiencies. Music therapy sees a fundamental connection between mind and body and emphasises that what affects the body also affects the mind. When mind-body integration is lacking, individuals will suffer from a variety of psychological disorders. Therefore, the core principles of music therapy emphasise that holistic individual health is embodied in the integration of mind and body, that body movement is expressive and communicative, and that music therapy uses body movement as a method of assessing the individual and as a means of clinical intervention.
Photocatalysis, an innovative technology, holds promise for addressing industrial pollution issues across aqueous solutions, surfaces, and gaseous effluents. The efficiency of photodegradation is notably influenced by light intensity and duration, underscoring the importance of optimizing these parameters. Furthermore, temperature and pH have a significant impact on pollutant speciation, surface chemistry, and reaction kinetics; therefore, process optimization must consider these factors. Photocatalytic degradation is an effective method for treating water in environmental remediation, providing a flexible and eco-friendly way to eliminate organic contaminants from wastewater. Selectivity in photocatalytic degradation is achieved by a multidisciplinary approach that includes reaction optimization, catalyst design, and profound awareness of chemical processes. To create efficient and environmentally responsible methods for pollution removal and environmental remediation, researchers are working to improve these components.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
Copyright © by EnPress Publisher. All rights reserved.