While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
Polymer waste drilling fluid has extremely high stability, and it is difficult to separate solid from liquid, which has become a key bottleneck problem restricting its resource recycling. This study aims to reveal the stability mechanism of polymer waste drilling fluid and explore the destabilization effect and mechanism of ultrasonic waste drilling fluid. Surface analysis techniques such as X-ray energy spectrum and infrared spectrum were used in combination with colloidal chemical methods to study the spatial molecular structure, stability mechanism, and ultrasonic destabilization mechanism of drilling fluid. The results show that the particles in the drilling fluid exist in two forms: uncoated particles and particles coated by polymers, forming a high molecular stable particle system. Among them, rock particles not coated by polymer follow the vacancy stability and Derjaguin-Landau-Verwey-Overbeek (DLVO) stability mechanism, and the weighting material coated by the polymer surface follows the space stability and DLVO stability mechanism. The results of ultrasonic destabilization experiments show that after ultrasonic treatment at 1000 W power for 5 min, coupled with the addition of 0.02% cationic polyacrylamide, the dehydration rate is as high as 81.0%, and the moisture content of the mud cake is as low as 29.3%, achieving an excellent solid-liquid separation effect. Ultrasound destabilizes polymer waste drilling fluid by destroying the long-chain structure of the polymer. This study provides theoretical support and research direction for the research and development of polymer waste drilling fluid destabilization technology.
Research networks organized around a particular topic are built as knowledge is produced and socialized. These are parts of a seminal or initial production, to which new authors and subtopics are added until research and knowledge networks are formed around a particular area. The purpose of the research was to find this type of relationship or network between authors, institutions, and countries that have contributed to the issue of the circular economy and specifically its relationship with sustainability. This allows those interested in the said object of study to know the research advances of the network, enter their research lines, or create new networks according to their interests or needs. The study used a bibliometric-type descriptive quantitative approach using the Scopus scientific database, the R Studio data analytics application, and the Bibliometrix library. The results were found to determine a relationship building from 2006, which makes it an emerging topic. However, the growth it has achieved in recent years of more than 31% shows a strong interest in the subject. Of the subtopics that have been addressed, sustainability, recycling, solid waste, wastewater, and renewable energy. Similarly, sectors such as construction, the automotive industry, tourism, cities, the agricultural sector, the chemical industry, and the implementation of technologies 4.0 and 5.0 in their processes stood out. The most prominent country in the scientific approach to this area is Italy. The most prominent author for his citations is Molina-Moreno, the source of knowledge that stands out for his contributions is the University of Granada and different networks have been built around their knowledge.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
Nationwide integration of AI into the contemporary art sector has taken place since government AI regulations in 2023 to promote AI use. China’s AI integration into industry is ‘ahead’ of other countries, meaning that other countries can learn from these creative professionals. Consequently, contemporary visual artists have devised arts-led sustainable AI solutions to overcome global AI concerns. They are now putting these solutions into practice to maintain their jobs, arts forms, and industry. This paper draws on 30 interviews with contemporary visual artists, and a survey with 118 professional artists from across China between 2023 and 2024. Findings show that 87% use AI and 76% say AI is useful and they will continue to use AI into the future. Findings show professionals have had time to find DIY, bottom-up solutions to AI concerns, including (1) building strong authorship practices, identity, and brand, (2) showing human creativity and inner thinking, (3) gaining a balanced independent position with AI. They want AI regulations to liberalise and promote AI use so they can freely experiment and develop AI. These findings show how humans are directing the use of AI, altering current narratives on AI-led impacts on industry, jobs, and human creativity.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city's northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model's predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
Copyright © by EnPress Publisher. All rights reserved.