The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
The increased awareness of the environmental effects of petroleum based plastics has stimulated the coffee price emergence of biodegradable polymers such as polylactic acid (PLA). In a bid to increase the sustainability of PLA agricultural residues of animal feeds (corn stover, rice straw, and soybean hulls) have been explored and examined as reinforcing fillers to PLA composites. The consideration of such applications is suitable to the goals of the circular economy as it recycles low-value agricultural products. The current review critically evaluates lately carried out life cycle assessment (LCA) studies on PLA composites that have implemented such waste fillers with the full focus being on their environmental performance as well as methodological consistency. The review shows that these fillers have a potential of reducing the amount of greenhouse emission, energy usage, and other environmental effects, compared to pure PLA. However, unevenness in LCA methodology, especially in functional units, the system boundaries, and impacts categories obstructs direct LCA comparisons. The 1997 State of the Market report also has limited options of feedstocks and the lack of appraisals in the socio-economic front, so the overall sustainability analysis is restricted. Some of the remaining limitations that can be critical are to have generalized LCA frameworks, extended exploration of waste-based fillers, as well as combination of techno-economic analysis and social impact. Future inquiries ought to devise design considerations that would optimize both the functional characteristics and the performance of the environment and improve the reliability of sustainability measures. This review is evidence to the potential of agricultural waste reinforced PLA composites in the progress towards environmentally friendly materials and the need of integrative evaluation in the sustainable maturation of bioplastics.
This study examines the spatial distribution of socioeconomic conditions in Colombia, using Moran’s Index as a tool for spatial autocorrelation analysis. Key indicators related to education, health, infrastructure, access to basic services, employment, and housing conditions are addressed, allowing the identification of inequalities and structural barriers. The research reveals patterns of positive autocorrelation in several socioeconomic dimensions, suggesting a concentration of poverty and underdevelopment in certain geographic areas of the country. The results show that municipalities with more unfavorable conditions tend to cluster spatially, particularly in the northern, northwestern, western, eastern, and southern regions of the country, while the central areas exhibit better conditions. Permutation analyses are employed to validate the statistical significance of the findings, and LISA cluster maps highlight the regions with the highest concentration of poverty and social vulnerability. This work contributes to the literature on inequality and regional development in emerging economies, demonstrating that public policies should prioritize intervention in territories that exhibit significant spatial clustering of poverty. The methodology and findings provide a foundation for future studies on spatial correlation and economic planning in both local and international contexts.
Heat transfer augmentation procedures, such as Heat Transfer Enhancement and Intensification, are commonly used in heat exchanger systems to enhance thermal performance by decreasing thermal resistance and increasing convective heat transfer rates. Swirl-flow devices, such as coiled tubes, twisted-tape inserts, and other geometric alterations, are commonly used to create secondary flow and improve the efficiency of heat transfer. This study aimed to explore the performance of a heat exchanger by comparing its performance with and without the use of twisted-tape inserts. The setup consisted of a copper inner tube measuring 13 mm in inner diameter and 15 mm in outer diameter, together with an outer pipe measuring 23 mm in inner diameter and 25 mm in outer diameter. Mild steel twisted tapes with dimensions of 2 mm thickness, 1.2 cm width, and twist ratios of 4.3 and 7.2 were utilised. The findings indicated that the heat transfer coefficient was 192.99 W/m² °C when twisted-tape inserts were used, while it was 276.40 W/m² °C without any inserts. The experimental results closely aligned with the theoretical assumptions, demonstrating a substantial enhancement in heat transfer performance by the utilisation of twisted-tape inserts. The study provides evidence that the utilisation of twisted-tape inserts resulted in a nearly two times increase in the heat transfer coefficient, hence demonstrating their efficacy in augmenting heat transfer.
This paper proposes to apply a microfluidic chip combining DSC, DTA, and PCR-like functions for studying synthesis and selection of precursors of the genetic code carriers at hydrothermal conditions including those in natural high frequency fields (such as magnetosphere emission, atmospherics, auroras and lightings).
Copyright © by EnPress Publisher. All rights reserved.