This study aims to investigate the effectiveness of community involvement in waste management through participatory research. Its objective is to bridge the theoretical underpinnings of participatory research with its practical implementation, particularly within the realm of waste management. The review systematically analyzes global instances where community engagement has been incorporated into waste management initiatives. Its principal aim is to evaluate the efficacy of participatory strategies by scrutinizing methodologies and assessing outcomes. To achieve this, the study identified 74 studies that met rigorous criteria through meticulous search efforts, encompassing various geographical locations, cultural contexts, and waste management challenges. In examining the outcomes of participatory research in waste management, the study explores successful practices, shortcomings, and potential opportunities. Moving beyond theoretical discourse, it provides a detailed analysis of real-world applications across various settings. The evaluation not only highlights successful engagement strategies and indicators but also critically assesses challenges and opportunities. By conducting a comprehensive review of existing research, this study establishes a foundation for future studies, policy development, and the implementation of sustainable waste management practices through community engagement. The overarching goal is to derive meaningful insights that contribute to a more inclusive, effective, and globally sustainable approach to waste management. This study seeks to inform policymaking and guide future research initiatives, emphasizing the importance of community involvement in addressing the complexities of waste management on a global scale.
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
The performance of five cauliflower cultivars in conventional and alternative phytosanitary management—without the use of synthetic pesticides—was evaluated. Two experiments were conducted at Epagri, Ituporanga Experimental Station in February 2018 and 2019. A randomized block design with four repetitions was adopted, with twenty plants of each cultivar as plots. The seedlings were transplanted on millet and mucuna straw at a spacing of 0.5 m × 0.8 m. We evaluated agronomic yield, inflorescence quality, pest damage and plant diseases, especially bacterial and fungal rots. The cauliflower hybrids Vera, Verona and Serena stood out in productivity and quality, being the most indicated for sowing in off-season crops, in the Alto Vale do Itajaí region. The most productive cultivars were less damaged by bacterial diseases and defoliating caterpillars and without interference of whitefly infestation on yield. The results also reveal that it is possible to control pests and diseases with phytosanitary products of lower toxicity, i.e., with lower residues of synthetic pesticides.
Copyright © by EnPress Publisher. All rights reserved.