To save patients’ lives, it is important to go for an early diagnosis of intracranial hemorrhage (ICH). For diagnosing ICH, the widely used method is non-contrast computed tomography (NCCT). It has fast acquisition and availability in medical emergency facilities. To predict hematoma progression and mortality, it is important to estimate the volume of intracranial hemorrhage. Radiologists can manually delineate the ICH region to estimate the hematoma volume. This process takes time and undergoes inter-rater variability. In this research paper, we develop and discuss a fine segmentation model and a coarse model for intracranial hemorrhage segmentations. Basically, two different models are discussed for intracranial hemorrhage segmentation. We trained a 2DDensNet in the first model for coarse segmentation and cascaded the coarse segmentation mask output in the fine segmentation model along with input training samples. A nnUNet model is trained in the second fine stage and will use the segmentation labels of the coarse model with true labels for intracranial hemorrhage segmentation. An optimal performance for intracranial hemorrhage segmentation solution is obtained.
Recognizing the discipline category of the abstract text is of great significance for automatic text recommendation and knowledge mining. Therefore, this study obtained the abstract text of social science and natural science in the Web of Science 2010-2020, and used the machine learning model SVM and deep learning model TextCNN and SCI-BERT models constructed a discipline classification model. It was found that the SCI-BERT model had the best performance. The precision, recall, and F1 were 86.54%, 86.89%, and 86.71%, respectively, and the F1 is 6.61% and 4.05% higher than SVM and TextCNN. The construction of this model can effectively identify the discipline categories of abstracts, and provide effective support for automatic indexing of subjects.
Copyright © by EnPress Publisher. All rights reserved.