Disinformation can be defined as false information deliberately initiated to cause harm to a person, social group, organization, or country. Gendered disinformation then attacks or undermines people based on gender or weaponizes gendered narratives for political, social, or economic objectives. Gendered disinformation comes in different forms, such as harmful social media posts and graphics, sexual fabrications, and other forms of conspiracy theories. It is used in various situations and at different places. This research discussed the instances of gendered disinformation and harmful online narratives that are recognizable and visible. It sheds light on the potential direct and indirect impact on youth experiences. In this study, the young participants (aged 18–30) focused on the instances of the existing online narratives of gendered discrimination from Belgium, Greece, Latvia, Spain, and Türkiye. The research provided an initial analysis of what “gendered information and harmful online narratives” look like and some recommendations from youth perspectives on countering the issues. The study concluded that there is a need for more research, further harmonization of legal frameworks, and strengthened capacity to detect gendered disinformation, propaganda, and hate speech.
In Nigeria, deforestation has led to an unimaginable loss of genetic variation within tree populations. Regrettably, little is known about the genetic variation of many important indigenous timber species in Nigeria. More so, the specific tools to evaluate the genetic diversity of these timber species are scarce. Therefore, this study developed species-specific markers for Pterygota macrocarpa using state-of-the-art equipment. Leaf samples were collected from Akure Forest Reserve, Ondo State, Nigeria. DNA isolation, quantification, PCR amplification, gel electrophoresis, post-PCR purification, and sequencing were done following a standardized protocol. The melting temperatures (TM) of the DNA fragments range from 57.5 ℃to 60.1 ℃ for primers developed from the MatK gene and 58.7 ℃ to 60.5 ℃ for primers developed from the RuBisCo gene. The characteristics of the ten primers developed are within the range appropriate for genetic diversity assessment. These species-specific primers are therefore recommended for population evaluation of Pterygota macrocarpa in Nigeria.
The demography of Saudi Arabia has been discussed many times but its conflict with the theories of transition and associated structural changes is unexplained. This research explains the demographic differentials stated as lag - real from theoretical – separately for the native and total population. This research developed demographic indicators revealing trends and patterns by adopting a secondary data analysis method, utilizing the General Authority for Statistics census data and other online data. The demographic transition of Saudi Arabia is in line with the theoretical contentions of pretransition and transition (early, mid, and late) stages but at definite time intervals. The absolute size, percentage change, and annual growth rate are explanatory for natives and are considered separately. Moreover, the structural population changes reveal transition stages from expansive to near expansive and constricting and stabilizing. Furthermore, broad age groups indicate rapid declines in the percentage of children, rapid increases in young adults, slow increases in older adults, and no changes in older persons. Even the sex ratio of natives is at par with other populations in transition (slightly above 100). Thus, it could be concluded that a demographic transition with structural changes as per theories: flawless growth rates with an expanding demographic dividend. At this juncture, the integration of migrants into society by endorsing family life and enabling social and demographic balance appears as imperative to improving the labor sector, productivity, and the image of the country in the international spheres for comparisons and benchmarking.
Nanoscale zero-valent iron (nZVI) is thought to be the most effective remediation material for contaminated soil, especially when it comes to heavy metal pollutants. In the current high-industrial and technologically advanced period, water pollution has emerged as one of the most significant causes for concern. In this instance, silica was coated with zero-valent iron nanoparticles at 650 and 800 ℃. Ferric iron with various counter-ions, nitrate (FN) and chloride (FC), and sodium borohydride as a reducing agent were used to create nanoscale zero-valent iron in an ethanol medium with nitrogen ambient conditions. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques were employed to describe the structures of the generated zero-valent iron nanoparticles. Further, we investigated the electrical properties and adsorption characteristics of dyes such as alizarin red in an aqueous medium. As a result, zero-valent nano iron (nZVI), a core-shell environmental functional material, has found extensive application in environmental cleanup. The knowledge in this work will be useful for nZVI-related future research and real-world applications.
To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
Copyright © by EnPress Publisher. All rights reserved.