Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
The effects of climate change are recognized globally. This study hypothesizes that climate change impacts are a complex system that creates a ripple effect on water security, food security, and economic security. Ultimately, those domains simultaneously exacerbate climate change effects and produce national security concerns. The study’s framework uses a transdisciplinary team’s quantitative and qualitative approach to evaluate the challenges and possible solutions to climate change security on the Water–Food–Socioeconomic Nexus. Iraq has been taken as a case study highlighting the deficits in management and governance. The dynamic of the ripple effect shows the interventions for each sector’s water-food-socioeconomic and security that collectively impact upon each other over time. The radical shift in the political infrastructure after 2003 from a centralized to a decentralized one without proper preparation is one of the root causes of the governance and management anarchy. About 228 state and non-state actors are involved in decision-making, leaving it fragile and unsustainable. Only 1% of the national budget is allocated to both the Ministry of Water Resources and the Ministry of Agriculture, which leaves no capacity to mitigate the risk of climate change impact.
The urgency of adapting urban areas to the increasing impacts of climate change has prompted the scientific community to seek new approaches in partnership with public entities and civil society organizations. In Malaysia, Penang Island has developed a nature-based urban climate adaptation program (PNBCAP) seeking to increase urban resilience, reduce urban heat and flooding, strengthening social resilience, and build institutional capacity. The project includes a strong knowledge transfer component focused on encouraging other cities in the country to develop and implement adaptation policies, projects, and initiatives. This research develops a model adopting the most efficient processes to accelerate the transfer of knowledge to promote urban adaptation based on the PNBCAP. The methodology is developed based on a review of literature focused on innovation systems and change theories. The integration of success strategies in adaptation contributes to informing the creation of solutions around the alliance of local, state, and national government agencies, scientific institutions, and civil society organizations, in a new framework designated the Malaysian Adaptation Sharing Hub (MASH). MASH is structured in 3-steps and will function as an accelerator for the implementation of urban climate adaptation policies, with the target of creating 2 new adaptation-related policies to be adopted annually by each city member, based on knowledge gathered in the PNBCAP. It is concluded that, to speed up urban adaptation, it is necessary to reinforce and promote the sharing of knowledge resulting from or associated with pilot projects.
Given the eclectic and localized nature of environmental risks, planning for sustainability requires solutions that integrate local knowledge and systems while acknowledging the need for continuous re-evaluation. Social-ecological complexity, increasing climate volatility and uncertainty, and rapid technological innovation underscore the need for flexible and adaptive planning. Thus, rules should not be universally applied but should instead be place-based and adaptive. To demonstrate these key concepts, we present a case study of water planning in Texas, whose rapid growth and extreme weather make it a bellwether example. We review historic use and compare the 2002, 2007, 2012, 2017 and 2022 Texas State Water Plans to examine how planning outcomes evolve across time and space. Though imperfect, water planning in Texas is a concrete example of place-based and adaptive sustainability. Urban regions throughout the state exhibit a diversity of strategies that, through the repeated 5-year cycles, are ever responding to evolving trends and emerging technologies. Regional planning institutions play a crucial role, constituting an important soft infrastructure that links state capacity and processes with local agents. As opposed to “top-down” or “bottom-up”, we frame this governance as “middle-out” and discuss how such a structure might extend beyond the water sector.
Agroforestry holds the key in providing alternative economically viable livelihood development and to support mountainous farmers to adapt to climate change. Innovative agroforestry interventions integrating animal production, horticulture etc into cropping systems exist that can help farmers improve yields and build resilience for supporting livelihoods particularly among marginal communities. But, the lack of knowledge, technical know-how and other information among the farmers are major barriers in adoption of agroforestry. Millions of the farmers of mountainous regions are already wrestling with water scarcity, which would be more severe in climate change scenario. The Himalayan regions are have been considered to be highly sensitive to climate change. Indeed, Innovative agroforestry interventions have the potential to conserve natural resources, improve productivity and provide resilience to climate change. The present paper highlights the need for developing innovative agroforestry interventions to promote various alternate livelihood options through diversification, adoption of high yielding varieties and development of innovative products from forest resources. Of these spice based agroforetry, silvi-medicinal systems, Van silk cultivation, bamboo and ringal cultivation and development and use of farm resources based products like bamboo based composite structures, Seabuckthorn herbal tea, Ghingaroo juice (Crataegus crenulata) and incense products etc holds a promising potential to be explored as better options for future scenario.
The effects of climate change are already being felt, including the failure to harvest several agricultural products. On the other hand, peatland requires good management because it is a high carbon store and is vulnerable as a contributor to high emissions if it catches fire. This study aims to determine the potential for livelihood options through land management with an agroforestry pattern in peatlands. The methods used are field observation and in-depth interviews. The research location is in Kuburaya Regency, West Kalimantan, Indonesia. Several land use scenarios are presented using additional secondary data. The results show that agroforestry provides more livelihood options than monoculture farming or wood. The economic contribution is very important so that people reduce slash-and-burn activities that can increase carbon emissions and threaten the sustainability of peatland.
Copyright © by EnPress Publisher. All rights reserved.