According to the United Nations, by 2050, about 68% of the world’s population will live in urban areas. This population increase requires environmental resilience and planning ability to reduce the negative environmental impacts associated with growth. In this scenario, life cycle analysis, whose standards were introduced by ISO 14000 series, is an essential tool. From this perspective, smart cities whose concern about environmental sustainability is paramount corroborating SDG 11. This study aims to provide a holistic view of environmental technologies developed by Brazilian inventors, focused on life cycle analysis, which promotes innovation by helping cities build greener, more efficient, resilient, and sustainable environments. The methodology of this article was an exploratory study and investigated the scenario of patents in the life cycle. 209 patent processes with Brazilian inventors were found in the Espacenet database. Analyzing each of the results individually revealed processes related to air quality, solid waste, and environmental sanitation. The review of patent processes allowed mapping of the technological advances linked to life cycle analysis, finding that the system is still little explored and can present competitive advantages for cities.
Fire accidents are one of the serious security threats facing the metro, and the accurate determination of the index system and weights for fire assessment in underground stations is the key to conducting fire hazard assessment. Among them, the type and quantity of baggage, which varies with the number of passengers, is an important factor affecting the fire hazard assessment. This study is based on the combination of subjective and objective AHP (Analytic Hierarchy Process) with the available Particle Swarm Optimisation algorithm PSO (Particle Swarm Optimization) and the perfect CRITIC (Criteria Importance Through Intercriteria Correlation) empowered fuzzy evaluation method on the metro station fire hazard toughness indicator system and its weights were determined, and a fuzzy comprehensive evaluation model of metro station safety toughness under the influence of baggage was constructed. The practical application proves that the method provides a new perspective for the fire risk assessment of underground stations, and also provides a theoretical basis for the prevention and control of mobile fire load hazards in underground stations.
The purpose of the article is to present the results of analysis of newly industrialized countries in the context of sustainable development. The study took place within the framework of the Kaldor’s structural-economic model of the gross domestic product and the energy flow model, using the socio-economic systems power changes analyzing method. Within the context of the approach, an invariant coordinate system in energy units is considered, the necessary conditions for sustainable development are formulated, and the main parameters for assessing the potential for growth and development are determined. The article focuses on key issues regarding new concepts of sustainable development and methodology for assessing sustainable development using the concept of socioeconomics useful power for the countries of the newly industrialized economy a group of emerging countries that have made in short time period a qualitative transition in socio-economic development. Based on a new definition of sustainable development in energy units, development trends are formulated for the selected countries during 20 years for the period 2000–2019. Results of the study can be used to planning for the transition to sustainable development. The data of the Central Statistical Office of European Union, the World Bank and the United Nations Organization were used for calculations. Initial interpretation of the calculated data has been done for the largest newly industrialized countries Brazil, India and China in terms of the gross domestic product in the period 1990–2019. For comparison, data on USA are presented as countries with advanced economy.
Industrial heritage is a legacy from the past that we live with today and pass on to future generations. The economic value of this heritage can be defined as the amount of welfare that it generates for society, and this value should not be ignored. However, current research based on economic analysis has mostly focused on qualitative statements instead of quantitative assessment. This study proposes an innovative methodology combining qualitative (field research) and quantitative (willingness to pay and contingent valuation) methods to assess the economic value of industrial heritage. The industrial heritage of Tangshan, China, was chosen as a case study, and the research found that museums and cultural creative parks are effective ways to conserve industrial heritage. The entrance fee can be used to represent the economic value of the heritage site. There was a positive correlation between the influence of economic value and the entrance fees residents would prefer to pay. The results indicate the locals would prefer lower entrance fees for the transformed heritage museums (The average current cost: $2.23). Locals were most concerned about the entrance fees for the Kailuan Coal Mine and Qixin Cement Plant Museums, which have both been renewed as urban landmarks for city tourism. Renewal methods have been applied to six industrial heritage sites in Tangshan; these sites have their own conservation and renewal practices based on city-level development or industrial attributes. Thus, when residents recognize the economic value of a heritage site, they are willing to pay a higher entrance fee. This research demonstrates the economic value of industrial heritage using a mixed methods approach and provides a basis for assessing the value of cultural heritage for urban tourism analysis.
Copyright © by EnPress Publisher. All rights reserved.