The physical-mechanical characteristics of leather are crucial in the tanning industry since they determine whether the leather satisfies quality standards for various product manufacture. This study's goal was to assess the physical-mechanical characteristics of leather that could be washed and used for garments after the Zetestan-GF polymer was added during the tanning process. The data gathered from the physical-mechanical analysis of two treatments—one a control with white leather (T1) and the other with leather treated with Zetestan-GF polymer (T2)—were compared for the development of this work. Each treatment was performed in triplicate, undergoing three washes, yielding a total of 24 samples for analysis. Following the acquisition of the leather, a control was applied and the various treatments were compared. SAS software version 9.0 was utilized for the data's statistical analysis. The physical-mechanical properties of the control leather and the leather treated with Zetestan-GF polymer were compared using a one-way ANOVA, and any differences in the means (p < 0.05) were assessed using the Tukey test. The findings showed that while the polymer's application during the tanning process affects the parameters of softness, tensile strength, elongation percentage, and dry and wet flexometry, it has no effect on the lastometry parameter. In conclusion, the physical-mechanical characteristics of the product made by tanning cow hides can be greatly impacted by the inclusion of a polymer.
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10−2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm−1 and 1632 cm−1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag's optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
More and more scholars are paying attention to the economic and environmental responsibilities undertaken by firms. Firm sustainability has become a hot topic in current research. This article aims to analyze the impact of various dimensions of digital green technology innovation on firm sustainability. The “digital green technology innovation” in this research is a new variable explored based on previous research, and the five dimensions of the variable are created based on the POLE theory. This research uses authoritative Chinese databases to collect data on various dimensions of digital green technology innovation and sustainable development of companies, and uses a fixed effects model for regression analysis. The results indicate that the implementation of various dimensions of digital green technology innovation will promote the firm sustainability. Moreover, in firms with strong profitability, this performance is significantly better than in those with weak profitability.
Static atomic charges affect key ground-state parameters of boron quasi-planar clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small boron planar clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
In order to address severe siltation and enhance urban green spaces in Xianyang Lake, the research offers a sustainable solution by proposing an innovative integration of ecological dredging and landscape transformation. The key findings are as follows: Firstly, an ecological dredging mechanism was established by directly transporting sediment from Xianyang Lake to its central greenbelt, reducing dredging costs and environmental impact while creating a sustainable funding cycle through revenue from eco-tourism activities. Secondly, the landscape artistic conception of the central greenbelt was significantly improved by leveraging the natural distance between the lakeshore and the greenbelt, offering diverse viewing experiences and enhancing the cognitive abilities and urban life satisfaction of tourists. Thirdly, the project demonstrated substantial economic and social benefits, including revenue generation from paid activities like boat tours, increased public awareness of biodiversity through ecological education, and improved community well-being. The central greenbelt also enhanced the urban environment by improving air quality, mitigating the "heat island effect", and providing habitats for wildlife. This integrated approach serves as a model for sustainable urban development, offering valuable insights for cities facing similar ecological challenges. Future research should focus on long-term monitoring to further evaluate the ecological and socio-economic impacts of such projects.
The human brain has been described as a complex system. Its study by means of neurophysiological signals has revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncover brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy individuals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discriminative power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteristics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clinical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by calculating the amplitude of low frequency oscillations.
Copyright © by EnPress Publisher. All rights reserved.