Ecological beauty not only means the beauty of nature, but also refers to the balance between living things on earth. Ecological aesthetic education takes the holistic ecological view as the philosophical basis, advocating appreciating nature and caring about life with an aesthetic attitude, realizing the coexistence of man and nature, and promoting the harmonious development of man and society. In view of this, the current school ecological aesthetic education should deepen the integration of large and small ecological aesthetic education discipline system construction, improve the comprehensive quality of ecological aesthetic education teachers, combine social aesthetic education to enrich ecological aesthetic education extracurricular practice, and train new people for the construction of Chinese modern ecological civilization.
Malaria is a mosquito-borne infectious disease that affects humans and poses a severe public health problem. Nigeria has the highest number of global cases. Geospatial technology has been widely used to study the risks and factors associated with malaria hazards. The present study is conducted in Ibadan, Oyo State, Nigeria. The objective of this study is to map out areas that are at high risk of the prevalence of malaria by considering a good number of factors as criteria that determine the spread of malaria within Ibadan using open-source and Landsat remote sensing data and further analysis in GIS-based multi-criteria evaluation (MCE). This study considered factors like climate, environmental, socio-economic, and proximity to health centers as criteria for mapping malaria risk. The MCE used a weighted overlay of the factors to produce an element at-risk map, a malaria hazard map, and a vulnerability map. These maps were overlaid to produce the final malaria risk map, which showed that 72% of Ibadan has a risk of malaria prevalence. Identification and delineation of risk areas in Ibadan would help policymakers and decision-makers mitigate the hazards and improve the health status of the state.
Vehicle detection stands out as a rapidly developing technology today and is further strengthened by deep learning algorithms. This technology is critical in traffic management, automated driving systems, security, urban planning, environmental impacts, transportation, and emergency response applications. Vehicle detection, which is used in many application areas such as monitoring traffic flow, assessing density, increasing security, and vehicle detection in automatic driving systems, makes an effective contribution to a wide range of areas, from urban planning to security measures. Moreover, the integration of this technology represents an important step for the development of smart cities and sustainable urban life. Deep learning models, especially algorithms such as You Only Look Once version 5 (YOLOv5) and You Only Look Once version 8 (YOLOv8), show effective vehicle detection results with satellite image data. According to the comparisons, the precision and recall values of the YOLOv5 model are 1.63% and 2.49% higher, respectively, than the YOLOv8 model. The reason for this difference is that the YOLOv8 model makes more sensitive vehicle detection than the YOLOv5. In the comparison based on the F1 score, the F1 score of YOLOv5 was measured as 0.958, while the F1 score of YOLOv8 was measured as 0.938. Ignoring sensitivity amounts, the increase in F1 score of YOLOv8 compared to YOLOv5 was found to be 0.06%.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
Data mining technology is a product of the development of the new era. Unlike other similar technologies, data mining technology is mainly committed to solving various application problems, and the main means of solving problems are to use big data technology and machine learning algorithms. Simply put, data mining technology is like panning for gold in the sand, searching for useful information among massive amounts of information. Data mining technology is widely applied in various fields, such as scientific research and business, and also has its shadow in the education industry. Currently, major universities are applying data mining technology to teaching quality evaluation. This article first explains the impact of data mining technology on the education industry, and then specifically discusses the application of data mining technology in the evaluation of teaching quality in universities.
In light of the metaverse’s vast expansion, it’s a crucial intellectual platform that’s transforming the video game industry and spurring creative innovation and technological advancement. Considering the distinctive niche that Taiwan occupies within the realm of the video game industry, this study uses a total of 11 video game companies in Taiwan as samples. The study spans a period of 16 years, from 2007 to 2022, and utilizes the random effect regression model for analysis. The study results illustrate that intellectual capital efficiency exerts varying contributions to the creation of value across different corporate value indicators within the video game industry. Among the factors, HCE, SCE, and CEE demonstrate the highest explanatory power for ROE, reaching up to 82.23%. Following this, they account for 73.57% of the variance in market share, but only a meager 13.67% for Tobin’s Q. This study is the empirical evidence that different methods of measuring intellectual capital and various definitions of value creation in an industry may lead to divergent results and managerial implications in intellectual capital research. Hence, it is worthwhile for subsequent studies to continue clarifying and delving deeper into these aspects.
Copyright © by EnPress Publisher. All rights reserved.