This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
This paper presents a coupling of the Monte Carlo method with computational fluid dynamics (CFD) to analyze the flow channel design of an irradiated target through numerical simulations. A novel series flow channel configuration is proposed, which effectively facilitates the removal of heat generated by high-power irradiation from the target without necessitating an increase in the cooling water flow rate. The research assesses the performance of both parallel and serial cooling channels within the target, revealing that, when subjected to equivalent cooling water flow rates, the maximum temperature observed in the target employing the serial channel configuration is lower. This reduction in temperature is ascribed to the accelerated flow of cooling water within the serial channel, which subsequently elevates both the Reynolds number and the Nusselt number, leading to enhanced heat transfer efficiency. Furthermore, the maximum temperature is observed to occur further downstream, thereby circumventing areas of peak heat generation. This phenomenon arises because the cooling water traverses the target plates with the highest internal heat generation at a lower temperature when the flow channels are arranged in series, optimizing the cooling effect on these targets. However, it is crucial to note that the pressure loss associated with the serial structure is two orders of magnitude greater than that of the parallel structure, necessitating increased pump power and imposing stricter requirements on the target container and cooling water pipeline. These findings can serve as a reference for the design of the cooling channels in the target station system, particularly in light of the anticipated increase in beam power during the second phase of the China Spallation Neutron Source (CSNS Ⅱ).
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
Copyright © by EnPress Publisher. All rights reserved.