Water splitting, the process of converting water into hydrogen and oxygen gases, has garnered significant attention as a promising avenue for sustainable energy production. One area of focus has been the development of efficient and cost-effective catalysts for water splitting. Researchers have explored catalysts based on abundant and inexpensive materials such as nickel, iron, and cobalt, which have demonstrated improved performance and stability. These catalysts show promise for large-scale implementation and offer potential for reducing the reliance on expensive and scarce materials. Another avenue of research involves photoelectrochemical (PEC) cells, which utilize solar energy to drive the water-splitting reaction. Scientists have been working on designing novel materials, including metal oxides and semiconductors, to enhance light absorption and charge separation properties. These advancements in PEC technology aim to maximize the conversion of sunlight into chemical energy. Inspired by natural photosynthesis, artificial photosynthesis approaches have also gained traction. By integrating light-absorbing materials, catalysts, and membranes, these systems aim to mimic the complex processes of natural photosynthesis and produce hydrogen fuel from water. The development of efficient and stable artificial photosynthesis systems holds promise for sustainable and clean energy production. Tandem cells, which combine multiple light-absorbing materials with different bandgaps, have emerged as a strategy to enhance the efficiency of water-splitting systems. By capturing a broader range of the solar spectrum, tandem cells optimize light absorption and improve overall system performance. Lastly, advancements in electrocatalysis have played a critical role in water splitting. Researchers have focused on developing advanced electrocatalysts with high activity, selectivity, and stability for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). These electrocatalysts contribute to overall water-splitting efficiency and pave the way for practical implementation.
In the domains of geological study, natural resource exploitation, geological hazards, sustainable development, and environmental management, lithological mapping holds significant importance. Conventional approaches to lithological mapping sometimes entail considerable effort and difficulties, especially in geographically isolated or inaccessible regions. Incorporating geological surveys and satellite data is a powerful approach that can be effectively employed for lithological mapping. During this process, contemporary RS-enhancing methodologies demonstrate a remarkable proficiency in identifying complex patterns and attributes within the data, hence facilitating the classification of diverse lithological entities. The primary objective of this study is to ascertain the lithological units present in the western section of the Sohag region. This objective will be achieved by integrating Landsat ETM+ satellite imagery and field observations. To achieve our objectives, we employed many methodologies, including the true and false color composition (FCC&TCC), the minimal noise fraction (MNF), principal component analysis (PCA), decoration stretch (DS), and independent component analysis (ICA). Our findings from the field investigation and the data presented offer compelling evidence that the distinct lithological units can be effectively distinguished. A recently introduced geology map has been incorporated within the research area. The sequence of formations depicted in this map is as follows: Thebes, Drunka, Katkut, Abu Retag, Issawia, Armant, Qena, Abbassia, and Dandara. Implementing this integrated technique enhances our comprehension of geological units and their impacts on urban development in the area. Based on the new geologic map of the study area, geologists can improve urban development in the regions by detecting building materials “aggregates”. This underscores the significance and potential of our research in the context of urban development.
The WRKY gene family plays a very diverse role in plant growth and development. These genes contained an evolutionarily conserved WRKY DNA binding domain, which shows functional diversity and extensive expansion of the gene family. In this study, we conducted a genome-wide comparative analysis to investigate the evolutionary aspects of the WRKY gene family across various plant species and revealed significant expansion and diversification ranging from aquatic green algae to terrestrial plants. Phylogeny reconstruction of WRKY genes was performed using the Maximum Likelihood (ML) method; the genes were grouped into seven different clades and further classified into algae, bryophytes, pteridophytes, dicotyledons, and monocotyledons subgroups. Furthermore, duplication analysis showed that the increase in the number of WRKY genes in higher plant species was primarily due to tandem and segmental duplication under purifying selection. In addition, the selection pressures of different subfamilies of the WRKY gene were investigated using different strategies (classical and Bayesian maximum likelihood methods (Data monkey/PAML)). The average dN/dS for each group are less than one, indicating purifying selection. Our comparative genomic analysis provides the basis for future functional analysis, understanding the role of gene duplication in gene family expansion, and selection pressure analysis.
In the evolving landscape of the 21st century, universities are at the forefront of re-imagining their infrastructural identity. This conceptual paper delves into the transformative shifts witnessed within university infrastructure, focusing on the harmonisation of tangible physical assets and the expanding world of digital evolution. As brick-and-mortar structures remain pivotal, integrating digital platforms rapidly redefines the academic landscape, optimising learning and administrative experiences. The modern learning paradigm, enriched by this symbiotic relationship, offers dynamic, flexible, and comprehensive educational encounters, thereby transcending traditional spatial and temporal constraints. Therefore, this paper accentuates the broader implications of this infrastructural metamorphosis, particularly its significant role in driving economic development. The synergistic effects of physical and digital infrastructures enhance academic excellence and position universities as key players in addressing and navigating global challenges, setting forth a resilient and forward-looking educational blueprint for the future. In conclusion, integrating physical and digital infrastructures within universities heralds a transformative era, shaping a holistic, adaptable, and enriched academic environment poised to meet 21st-century challenges. This study illuminates the symbiotic relationship between tangible university assets and digital innovations, offering insights into their collective impact on modern education and broader economic trajectories.
The history of organic polymers is a remarkable journey from the discovery of natural materials like rubber and silk to the development of sophisticated synthetic polymers that have transformed industries and modern life. This comprehensive review article presents a detailed account of the evolution of organic polymers. It begins with the early uses of natural polymers and explores key breakthroughs, including the invention of Bakelite, nylon, and neoprene. The theoretical foundations of polymer science, laid by Hermann Staudinger, are discussed, and the post-war surge in polymer development is examined, including the introduction of polyethylene, polypropylene, and PVC. Notable advances in polymer chemistry, such as isotactic polypropylene and silicone polymers, are highlighted. The article also delves into the development of high-performance polymers like Kevlar and carbon-based materials, offering insights into their applications. Moreover, it discusses the current trends in polymer science, emphasizing sustainability and biodegradability. As the world continues to rely on polymers for numerous applications, this review provides a historical perspective and a glimpse into the future of organic polymers, where innovations are expected to shape various aspects of technology, healthcare, and environmental protection.
Copyright © by EnPress Publisher. All rights reserved.